Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(40): 53424-53436, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39190248

ABSTRACT

This work is primarily focused on overcoming the limitations of polymeric membranes in achieving the balance between permeability and selectivity of the separation performance. The filler, Zeolitic imidazole framework -67 (ZIF-67) nanoparticles were synthesised in cubical morphology using hexadecyltrimethylammonium bromide (CTAB) as a surfactant via the wet-chemical method. The uniform particles with particle sizes ranging between 120-180 nm were incorporated into the polyvinylidene fluoride (PVDF) matrix to fabricate mixed matrix membranes via the phase inversion method. These mixed matrix membranes were systematically characterised to confirm the chemical, structural and morphological properties of the materials and membranes. Furthermore, the membranes showed a 56.5% improvement in their mechanical properties. The results confirm that 5 wt.% ZIF-67/PVDF membrane showed the best separation results compared to its pure counterpart. The permeability of H2 gas was reported to be 1,094,511 Barrer, with selectivities of 3.03 for H2/CO2 and 3.06 for H2/N2. This represents a 210.6% increase in the permeability of H2 gas. These results demonstrate the influence of ZIF-67 loading in the PVDF polymer matrix along with the potential of ZIF-67/PVDF mixed matrix membranes in the field of hydrogen separation and purification.


Subject(s)
Hydrogen , Membranes, Artificial , Polyvinyls , Zeolites , Polyvinyls/chemistry , Zeolites/chemistry , Hydrogen/chemistry , Permeability , Polymers/chemistry , Imidazoles/chemistry , Fluorocarbon Polymers
2.
ACS Appl Mater Interfaces ; 16(6): 7700-7708, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38289231

ABSTRACT

In the dynamic landscape of industrial processes, membrane technology offers a paradigm shift beyond energy-intensive separation techniques, exemplifying a progressive leap toward sustainability. In this regard, highly flexible and uniform poly(3,4-ethylenedioxythiophene)polystyrenesulfonate (PEDOT:PSS)-engineered membranes at a reduced thickness have been fabricated on track-etched poly(ethylene terephthalate) (PET) substrates. The membranes were functionalized and embedded with platinum nanoparticles (Pt NPs) having a higher affinity toward H2 gas. The materials and fabricated membranes were characterized by using high-resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM) techniques for morphological and structural analysis. FTIR and Raman characterizations were performed to study the characteristic bonds. The uniformity and quantification of Pt nanoparticle binding were tested through inductively coupled plasma mass spectrometry (ICP-MS) studies and FESEM with EDS mapping. The gas separation performance was studied using H2, N2, and CO2 gases in pure and mixed (H2/CO2 in 50:50) states. It was observed that the modified membrane showed a 116% increment in H2 permeability and 82 and 107% increment in H2/CO2 and H2/N2 selectivity values with pure gas, while a 121% increment in H2 permeability and 156% increment in H2/CO2 selectivity using mixed gas. The separation performance in pure and mixed gas states with repeated experiments conspicuously highlighted their prospective viability as prime contenders for gas separation applications.

3.
Environ Sci Pollut Res Int ; 30(48): 105387-105397, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37713078

ABSTRACT

Through this work, we are reporting high-performance ZIF-8 @polycarbonate nanocomposite membranes with satisfactory structural stability for improving the gas separation performance. ZIF-8 nanoparticles were synthesised using the wet chemical route with cubic morphology and controlled size using CTAB as a surfactant. The membranes were prepared using the solution casting method by adding ZIF-8 filler at various concentrations. The synthesised filler material and MMMs were characterised through X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and RAMAN spectroscopy techniques. The gas separation measurements were taken using H2, CO2, and N2 gas in the purest form. The SEM results confirm the formation of spherulite-like morphology with the addition of ZIF-8 due to the crystallisation of the polymer, which increased the membrane's free volume and opened up additional pathways for the transportation of the gas molecules. The gas separation results confirmed that the 15 wt% ZIF-8/PC nanocomposite membrane showed the maximum H2 permeability of 180,970 barrer with an increment of 316.03%, while H2/CO2 and H2/N2 selectivity showed the increments of 89.43% and 103.64%, respectively. Therefore, this PC/ZIF-8 system seems to be a promising approach to developing new H2 selective membranes with high gas permeability and gas selectivity values.


Subject(s)
Carbon Dioxide , Nanocomposites , Carbonates , Excipients , Hydrogen , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL