Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychol ; 13: 868001, 2022.
Article in English | MEDLINE | ID: mdl-35432071

ABSTRACT

Working memory (WM) is the system responsible for maintaining and manipulating information, in the face of ongoing distraction. In turn, WM span is perceived to be an individual-differences construct reflecting the limited capacity of this system. Recently, however, there has been some evidence to suggest that WM capacity can increase through training, raising the possibility that training can functionally alter the neural structures supporting WM. To address the hypothesis that the neural substrates underlying WM are targeted by training, we conducted a meta-analysis of functional magnetic resonance imaging (fMRI) studies of WM training using Activation Likelihood Estimation (ALE). Our results demonstrate that WM training is associated exclusively with decreases in blood oxygenation level-dependent (BOLD) responses in clusters within the fronto-parietal system that underlie WM, including the bilateral inferior parietal lobule (BA 39/40), middle (BA 9) and superior (BA 6) frontal gyri, and medial frontal gyrus bordering on the cingulate gyrus (BA 8/32). We discuss the various psychological and physiological mechanisms that could be responsible for the observed reductions in the BOLD signal in relation to WM training, and consider their implications for the construct of WM span as a limited resource.

2.
Front Psychol ; 11: 585969, 2020.
Article in English | MEDLINE | ID: mdl-33192916

ABSTRACT

Over the last 2 decades, we have begun to gain traction on the neural systems that support creative cognition. Specifically, a converging body of evidence from various domains has demonstrated that creativity arises from the interaction of two large-scale systems in the brain: Whereas the default network (DN) is involved in internally-oriented generation of novel concepts, the executive control network (ECN) exerts top-down control over that generative process to select task-appropriate output. In addition, the salience network (SN) regulates switching between those networks in the course of creative cognition. In contrast, we know much less about the workings of these large-scale systems in support of creativity under extreme conditions, although that is beginning to change. Specifically, there is growing evidence from systems neuroscience to demonstrate that the functioning and connectivity of DN, ECN, and SN are influenced by stress - findings that can be used to improve our understanding of the behavioral effects of stress on creativity. Toward that end, we review findings from the neuroscience of creativity, behavioral research on the impact of stress on creativity, and the systems-level view of the brain under stress to suggest ways in which creativity might be affected under extreme conditions. Although our focus is largely on acute stress, we also touch on the possible impact of chronic stress on creative cognition.

SELECTION OF CITATIONS
SEARCH DETAIL