Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nanotechnology ; 35(9)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38035401

ABSTRACT

Mixed convection flow of two layers nanofluid in a vertical enclosure is studied. The channel consists of two regions. Region I is electrically conducting while Region II is electrically non-conducting. Region I is filled with base fluid water with copper oxides nanoparticles and Region II is filled with base fluid kerosene oil with iron oxides. The simultaneous effects of electro-magnetohydrodynamics and Grashof number are also taken into account. The governing flow problem consists of nonlinear coupled differential equations which is tackled using analytical technique. Analytical results have been obtained by the homotopy analysis method (HAM). The results for the leading parameters, such as the Hartmann numbers, Grashof numbers, ratio of viscosities, width ratio, volume fraction of nanoparticles, and the ratio of thermal conductivities for three different electric field scenarios under heat generation/absorption were examined. It is found that the effect of the negative electric load parameter assists the flow while the effect of the positive electric load parameter opposes the flow as compared to the case when the electric load parameter is zero. All outcomes for significant parameters on velocity and temperature are discussed graphically.

2.
Environ Sci Pollut Res Int ; 30(13): 36646-36662, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36550251

ABSTRACT

Energy sustainability plays a crucial role in the development of any country. With the booming economy of Turkey, it is necessary to ensure energy sustainability in every sector. The residential sector plays a vital role in energy consumption in Turkey and improving sustainability in this sector can foster Turkey's development. This study introduced first-time sustainability indicators of Turkey's residential sector to determine the energy and exergy analyses through a thermodynamics-derived approach based on the data from 2000 to 2017. Monte Carlo simulations have been performed for energy source variation. Possible distribution uncertainties show that natural gas (0.78-0.76), biofuels, and waste (0.39-0.43) are dominant parameters for energy and exergy. Improvement of biofuels and waste, renewable-based energy sources can be a feasible solution for fossil fuel replacement. In Turkey's residential sector, energy efficiency varies from 27.51 to 35.65%, while exergy efficiency ranges from 25.85 to 34.06%. The sustainability index for Turkey ranges from 1.34 to 1.51. In Turkey, around 65.93 to 74.14% of fossil fuel has been depleted in the last 18 years, which leads to lesser exergetic sustainability. Inefficient cooking, heating appliances, and lighting devices lead to higher exergy loss. Therefore, this study demonstrates the exergy analysis and prediction of the upcoming consequences of this analysis. In the future, Turkey can use higher efficient devices, especially in heating, lighting, and mechanical energy-related appliances, and electricity can be used to attain higher exergetic efficiency. Performed analysis and uncertainties of parameters will assist policymakers in selecting suitable alternative strategies in Turkey's residential sector for sustainable decision-making.


Subject(s)
Biofuels , Energy-Generating Resources , Turkey , Thermodynamics , Fossil Fuels
3.
Environ Sci Pollut Res Int ; 30(4): 10099-10109, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36066799

ABSTRACT

Tokyo Summer Olympics and Paralympics have raised social issues regarding the potential rise in COVID-19 cases in Japan and risks associated with the safe organization of mega sporting events during the pandemic, such as the FIFA World Cup Qatar 2022. This study investigates the Tokyo Summer Olympics as a unique case study to clarify the drivers of infectivity and provide guidelines to host countries for the safe organization of subsequent international sporting events. The result here reveals that Tokyo and Japan did not experience a rise in confirmed cases of COVID-19 due to the hosting of the Summer Olympics. Still, transmission dynamics seems to be mainly driven by the high density of population (about 1.2%, p-value <0.001) like other larger cities in Japan (result confirmed with Mann-Whitney U test, significance at 0.05). Our study provided evidence that hosting mega sporting events during this COVID-19 pandemic is safe if strictly maintained the precautions with non-pharmaceutical (and pharmaceutical) measures of control of infections. The Tokyo Summer Olympics hosting will be exemplary for next international events due to the successful implementation of preventive measures during COVID-19 pandemic crisis.


Subject(s)
COVID-19 , Communicable Diseases , Sports , Humans , Tokyo/epidemiology , COVID-19/epidemiology , Pandemics
4.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36355524

ABSTRACT

Nanoparticles play an essential role in biomedical applications. A most promising area in nanomedicine is drug targeting which is done with the aid of magnetized nanoparticles. In this study, the hemodynamics of hybrid nanofluid flow with gold and copper nanoparticles suspended in it is investigated. This research primarily focuses on magnetic drug delivery which is propagated through a tapered stenosed artery under three situations, including converging, diverging, and non-tapering arteries. To explore the rheological characteristics of blood, a Sutterby fluid, which is a non-Newtonian fluid, is postulated. The energy equation also incorporates the effects of the magnetic field and joule heating, as well as the viscous dissipation function. Lubrication theory provides a mathematical framework for model formulation. The hypothesized modeling is simplified to a set of nonlinear differential equations that are then solved using a perturbation method up to the second order of approximation. Graphs are used to describe the outcomes of different evolving parameters. The Sutterby fluid parameter opposes the flow negligibly, whereas the Hartmann number and thermal Grashof number strengthen the flow field. Copper nanoparticles (in the absence of gold nanoparticles) are observed to deplete the thermal profile substantially more than gold nanoparticles. Nevertheless, the thermal profile is enhanced by the presence of both nanoparticles (hybrid nanofluids). For greater values of the Sutterby fluid parameter, the wall shear stress has been observed to rise considerably, whereas the inverse is true for the Hartmann number and the thermal Grashof number. The present results have been improved to give significant information for biomedical scientists who are striving to study blood flow in stenosis situations, as well as for those who will find the knowledge valuable in the treatment of different diseases.

5.
Model Earth Syst Environ ; 8(3): 3413-3421, 2022.
Article in English | MEDLINE | ID: mdl-34667828

ABSTRACT

The CAR-T cells are the genetically engineered T cells, designed to work specifically for the virus antigens (or other antigens, such as tumour specific antigens). The CAR-T cells work as the living drug and thus provides an adoptive immunotherapy strategy. The novel corona virus treatment and control designs are still under clinical trials. One of such techniques is the injection of CAR-T cells to fight against the COVID-19 infection. In this manuscript, the hypothesis is based on the CAR-T cells, that are suitably engineered towards SARS-2 viral antigen, by the N protein. The N protein binds to the SARS-2 viral RNA and is found in abundance in this virus, thus for the engineered cell research, this protein sequence is chosen as a potential target. The use of the sub-population of T-reg cells is also outlined. Mathematical modeling of such complex line of action can help to understand the dynamics. The modeling approach is inspired from the probabilistic rules, including the branching process, the Moran process and kinetic models. The Moran processes are well recognized in the fields of artificial intelligence and data science. The model depicts the infectious axis "virus-CAR-T cells-memory cells". The theoretical analysis provides a positive therapeutic action; the delay in viral production may have a significant impact on the early stages of infection. Although it is necessary to carefully evaluate the possible side effects of therapy. This work introduces the possibility of hypothesizing an antiviral use by CAR-T cells.

6.
Sci Total Environ ; 811: 152295, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-34896490

ABSTRACT

COVID-19 pandemic-borne wastes imposed a severe threat to human lives as well as the total environment. Improper handling of these wastes increases the possibility of future transmission. Therefore, immediate actions are required from both local and international authorities to mitigate the amount of waste generation and ensure proper disposal of these wastes, especially for low-income and developing countries where solid waste management is challenging. In this study, an attempt is made to estimate healthcare waste generated during the COVID-19 pandemic in Bangladesh. This study includes infected, ICU, deceased, isolated and quarantined patients as the primary sources of medical waste. Results showed that COVID-19 medical waste from these patients was 658.08 tons in March 2020 and increased to 16,164.74 tons in April 2021. A top portion of these wastes was generated from infected and quarantined patients. Based on survey data, approximate daily usage of face masks and hand gloves is also determined. Probable waste generation from COVID-19 confirmatory tests and vaccination has been simulated. Finally, several guidelines are provided to ensure the country's proper disposal and management of COVID-related wastes.


Subject(s)
COVID-19 , Medical Waste Disposal , Medical Waste , Waste Management , Bangladesh/epidemiology , Delivery of Health Care , Humans , Pandemics , SARS-CoV-2
7.
Entropy (Basel) ; 23(9)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34573787

ABSTRACT

Krawtchouk polynomials (KPs) and their moments are promising techniques for applications of information theory, coding theory, and signal processing. This is due to the special capabilities of KPs in feature extraction and classification processes. The main challenge in existing KPs recurrence algorithms is that of numerical errors, which occur during the computation of the coefficients in large polynomial sizes, particularly when the KP parameter (p) values deviate away from 0.5 to 0 and 1. To this end, this paper proposes a new recurrence relation in order to compute the coefficients of KPs in high orders. In particular, this paper discusses the development of a new algorithm and presents a new mathematical model for computing the initial value of the KP parameter. In addition, a new diagonal recurrence relation is introduced and used in the proposed algorithm. The diagonal recurrence algorithm was derived from the existing n direction and x direction recurrence algorithms. The diagonal and existing recurrence algorithms were subsequently exploited to compute the KP coefficients. First, the KP coefficients were computed for one partition after dividing the KP plane into four. To compute the KP coefficients in the other partitions, the symmetry relations were exploited. The performance evaluation of the proposed recurrence algorithm was determined through different comparisons which were carried out in state-of-the-art works in terms of reconstruction error, polynomial size, and computation cost. The obtained results indicate that the proposed algorithm is reliable and computes lesser coefficients when compared to the existing algorithms across wide ranges of parameter values of p and polynomial sizes N. The results also show that the improvement ratio of the computed coefficients ranges from 18.64% to 81.55% in comparison to the existing algorithms. Besides this, the proposed algorithm can generate polynomials of an order ∼8.5 times larger than those generated using state-of-the-art algorithms.

8.
Sensors (Basel) ; 21(11)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073546

ABSTRACT

Visible light communications (VLC) is gaining interest as one of the enablers of short-distance, high-data-rate applications, in future beyond 5G networks. Moreover, non-orthogonal multiple-access (NOMA)-enabled schemes have recently emerged as a promising multiple-access scheme for these networks that would allow realization of the target spectral efficiency and user fairness requirements. The integration of NOMA in the widely adopted orthogonal frequency-division multiplexing (OFDM)-based VLC networks would require an optimal resource allocation for the pair or the cluster of users sharing the same subcarrier(s). In this paper, the max-min rate of a multi-cell indoor centralized VLC network is maximized through optimizing user pairing, subcarrier allocation, and power allocation. The joint complex optimization problem is tackled using a low-complexity solution. At first, the user pairing is assumed to follow the divide-and-next-largest-difference user-pairing algorithm (D-NLUPA) that can ensure fairness among the different clusters. Then, subcarrier allocation and power allocation are solved iteratively through both the Simulated Annealing (SA) meta-heuristic algorithm and the bisection method. The obtained results quantify the achievable max-min user rates for the different relevant variants of NOMA-enabled schemes and shed new light on both the performance and design of multi-user multi-carrier NOMA-enabled centralized VLC networks.

9.
Mar Pollut Bull ; 168: 112419, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33930644

ABSTRACT

Face masks are playing an essential role in preventing the spread of COVID-19. Face masks such as N95, and surgical masks, contain a considerable portion of non-recyclable plastic material. Marine plastic pollution is likely to increase due to the rapid use and improper dispensing of face masks, but until now, no extensive quantitative estimation exists for coastal regions. Linking behaviour dataset on face mask usage and solid waste management dataset, this study estimates annual face mask utilization and plastic pollution from mismanaged face masks in coastal regions of 46 countries. It is estimated that approximately 0.15 million tons to 0.39 million tons of plastic debris could end up in global oceans within a year. With lower waste management facilities, the number of plastic debris entering the ocean will rise. Significant investments are required from global communities in improving the waste management facilities for better disposal of masks and solid waste.


Subject(s)
COVID-19 , Plastics , Humans , Masks , Oceans and Seas , SARS-CoV-2
10.
Environ Sci Pollut Res Int ; 28(28): 37679-37688, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33723785

ABSTRACT

One of the dominating meat supply industries, the poultry chicken sector, is facing waste management concerns worldwide. Due to high oil content containment, biofuel researchers emphasized poultry waste as abundant, cheap, and high-quality feedstock for biodiesel production. Therefore, in the current study, an experimental investigation of biodiesel production from wasted chicken skin through the transesterification process has been performed. The chicken skin used in this study for biodiesel production can be used as the potential waste source for biodiesel production worldwide. Techno-economic, environmental, and sustainability analyses were also performed. During the synthesis, the reaction was conducted with potassium hydroxide (KOH), and the process yielded 48% biodiesel. The cost of electricity for providing electricity is estimated at US$0.575 per kWh when an auto-sized generator has been fueled by biodiesel. The environmental and substantiality analysis found that biodiesel is more suitable than conventional diesel as an environmentally friendly and sustainable fuel.


Subject(s)
Biofuels , Waste Management , Animals , Bangladesh , Chickens , Esterification , Plant Oils
11.
J Mol Liq ; 327: 114863, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33281252

ABSTRACT

It is highly desired to explore the interventions of COVID-19 for early treatment strategies. Such interventions are still under consideration. A model is benchmarked research and comprises target cells, virus infected cells, immune cells, pro-inflammatory cytokines, and, anti-inflammatory cytokine. The interaction of the drug with the inflammatory sub-system is analyzed with the aid of kinetic modeling. The impact of drug therapy on the immune cells is modelled and the computational framework is verified with the aid of numerical simulations. The work includes a significant hypothesis that quantifies the complex dynamics of the infection, by relating it to the effect of the inflammatory syndrome generated by IL-6. In this paper we use the cancer immunoediting process: a dynamic process initiated by cancer cells in response to immune surveillance of the immune system that it can be conceptualized by an alternating movement that balances immune protection with immune evasion. The mechanisms of resistance to immunotherapy seem to broadly overlap with those used by cancers as they undergo immunoediting to evade detection by the immune system. In this process the immune system can both constrain and promote tumour development, which proceeds through three phases termed: (i) Elimination, (ii) Equilibrium, and, (iii) Escape [1]. We can also apply these concepts to viral infection, which, although it is not exactly "immunoediting", has many points in common and helps to understand how it expands into an "untreated" host and can help in understanding the SARS-CoV2 virus infection and treatment model.

12.
Environ Sci Pollut Res Int ; 28(10): 12881-12888, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33094462

ABSTRACT

Industrial furnaces play a significant role in industrial energy consumption and production. Minimizing losses from these furnaces can contribute to industrial sustainability. Exergy being an optimization tool can reduce energy loss and emission from furnaces and contribute to environmental sustainability. Currently, no exergy-based sustainability analysis has been adopted in the literature. In this analysis, a reheater furnace that is fired by natural gas is analyzed in terms of energy and exergy utilization. To address the sustainability of the furnace, several exergy-based sustainability parameters have been used. The overall energy efficiency of the furnace is 93.40%, while exergy efficiency is only 27.37%. From sustainability analysis, it is found that 72.63% of the fuel is diminished from the furnace, and it contributes to a lower sustainability index of 1.38. Higher exergy losses from this furnace positively affect the environment, which is validated from the higher value of the environmental destruction coefficient, the environmental destruction index, and the lower value of the environmental benign index. The value of the environmental destruction coefficient is 3.65, and the value of the environmental benign index is 0.38. Recovering waste energy and optimizing auxiliary equipment will increase the value of sustainability parameters.


Subject(s)
Conservation of Energy Resources , Industry
13.
Asian Pac J Cancer Prev ; 21(1): 13-18, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31983157

ABSTRACT

OBJECTIVE: Oral cancer and precancers are a major public health challenge in developing countries. Researchers in Saudi Arabia have constantly been directing their efforts on oral cancer research and have their results published. Systematic analysis of such papers is the need of the hour as it will not only acknowledge the current status but will also help in framing future policies on oral cancer research in Saudi Arabia. METHOD: The search string "oral cancer" OR "Oral Squamous Cell Carcinoma" OR "oral premalignant lesion" OR "oral precancer" OR "Oral Potentially malignant disorder" AND AFFIL (Saudi AND Arabia ) was used for retrieval of articles from Scopus database. Various tools available in Scopus database were used for analyzing the bibliometric related parameters. RESULTS: The search revealed a total of 663 publications based on the above query. Maximum affiliations were from King Saud University (163) followed by Jazan University (109) and then King Abdulaziz University (106). A large number of international collaborations were observed, the maximum with India (176) and the USA (127). The maximum number of articles were published in the Asia Pacific Journal of Cancer Prevention (34) followed by the Journal of Contemporary Dental Practice (33) and Journal of Oral Pathology and Medicine (19). CONCLUSION: Saudi researchers are directing their efforts towards the public health menace of oral cancer. However, it was also observed that some institutions have emerged as front runners in research, whereas others are contributing significantly less. The health department should encourage and take necessary steps to increase the involvement of other institutions.


Subject(s)
Mouth Neoplasms/pathology , Precancerous Conditions/pathology , Publications/statistics & numerical data , Research/statistics & numerical data , Bibliometrics , Carcinoma, Squamous Cell/pathology , Humans , Public Health/statistics & numerical data , Research Personnel/statistics & numerical data , Saudi Arabia
14.
Environ Sci Pollut Res Int ; 26(22): 22494-22511, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31161545

ABSTRACT

In this study, we proposed integrated tools to evaluate the wind power potential, economic viability, and prioritize 15 proposed sites for the installation of wind farms. Initially, we used modified Weibull distribution model coupled with power law to assess the wind power potential. Secondly, we employed value cost method to estimate per unit cost ($/kWh) of proposed sites. Lastly, we used Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (F-TOPSIS) to rank the best alternatives. The results indicate that Pakistan has enormous wind power potential that cost varies from 0.06 $/kWh to 0.58 $/kWh; thus, sites S12, S13, S14, and S15 are considered as the most economic viable locations for the installation of wind power project, while remaining sites are considered to be less important, due to other complexities. The further analysis using Fuzzy-TOPSIS method reveals that site S13 is the most optimal location followed by S12, S14, and S14 for the development of wind power project. We proposed that government should formulate wind power policy for the implementation of wind power projects in order to meet energy demand of the country.


Subject(s)
Renewable Energy/economics , Wind , Cost-Benefit Analysis , Fuzzy Logic , Government , Pakistan , Policy , Renewable Energy/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...