Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230237, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38853570

ABSTRACT

The synaptic tagging and capture (STC) hypothesis lays the framework on the synapse-specific mechanism of protein synthesis-dependent long-term plasticity upon synaptic induction. Activated synapses will display a transient tag that will capture plasticity-related products (PRPs). These two events, tag setting and PRP synthesis, can be teased apart and have been studied extensively-from their electrophysiological and pharmacological properties to the molecular events involved. Consequently, the hypothesis also permits interactions of synaptic populations that encode different memories within the same neuronal population-hence, it gives rise to the associativity of plasticity. In this review, the recent advances and progress since the experimental debut of the STC hypothesis will be shared. This includes the role of neuromodulation in PRP synthesis and tag integrity, behavioural correlates of the hypothesis and modelling in silico. STC, as a more sensitive assay for synaptic health, can also assess neuronal aberrations. We will also expound how synaptic plasticity and associativity are altered in ageing-related decline and pathological conditions such as juvenile stress, cancer, sleep deprivation and Alzheimer's disease. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Subject(s)
Brain , Memory , Neuronal Plasticity , Synapses , Synapses/physiology , Humans , Neuronal Plasticity/physiology , Brain/physiology , Memory/physiology , Animals , Models, Neurological
2.
FASEB J ; 37(8): e23067, 2023 08.
Article in English | MEDLINE | ID: mdl-37401900

ABSTRACT

Age-induced impairments in learning and memory are in part caused by changes to hippocampal synaptic plasticity during aging. The p75 neurotrophin receptor (p75NTR ) and mechanistic target of rapamycin (mTOR) are implicated in synaptic plasticity processes. mTOR is also well known for its involvement in aging. Recently, p75NTR and mTOR were shown to be mechanistically linked, and that p75NTR mediates age-induced impairment of hippocampal synaptic plasticity. Yet the consequences of p75NTR -mTOR interaction on hippocampal synaptic plasticity, and the role of mTOR in age-induced cognitive decline, are unclear. In this study, we utilize field electrophysiology to study the effects of mTOR inhibition and activation on long-term potentiation (LTP) in male young and aged wild-type (WT) mice. We then repeated the experiments on p75NTR knockout mice. The results demonstrate that mTOR inhibition blocks late-LTP in young WT mice but rescues age-related late-LTP impairment in aged WT mice. mTOR activation suppresses late-LTP in aged WT mice while lacking observable effects on young WT mice. These effects were not observed in p75NTR knockout mice. These results demonstrate that the role of mTOR in hippocampal synaptic plasticity is distinct between young and aged mice. Such effects could be explained by differing sensitivity of young and aged hippocampal neurons to changes in protein synthesis or autophagic activity levels. Additionally, elevated mTOR in the aged hippocampus could cause excessive mTOR signaling, which is worsened by activation and alleviated by inhibition. Further research on mTOR and p75NTR may prove useful for advancing understanding and, ultimately, mitigation of age-induced cognitive decline.


Subject(s)
Neuronal Plasticity , Neurons , Animals , Male , Mice , Aging , Hippocampus/metabolism , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , TOR Serine-Threonine Kinases/metabolism
3.
Commun Biol ; 6(1): 685, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37400621

ABSTRACT

Cancer patients often experience impairments in cognitive function. However, the evidence for tumor-mediated neurological impairment and detailed mechanisms are still lacking. Gut microbiota has been demonstrated to be involved in the immune system homeostasis and brain functions. Here we find that hepatocellular carcinoma (HCC) growth alters the gut microbiota and impedes the cognitive functions. The synaptic tagging and capture (STC), an associative cellular mechanism for the formation of associative memory, is impaired in the tumor-bearing mice. STC expression is rescued after microbiota sterilization. Transplantation of microbiota from HCC tumor-bearing mice induces similar STC impairment in wide type mice. Mechanistic study reveals that HCC growth significantly elevates the serum and hippocampus IL-1ß levels. IL-1ß depletion in the HCC tumor-bearing mice restores the STC. Taken together, these results demonstrate that gut microbiota plays a crucial role in mediating the tumor-induced impairment of the cognitive function via upregulating IL-1ß production.


Subject(s)
Carcinoma, Hepatocellular , Cognition , Gastrointestinal Microbiome , Liver Neoplasms , Animals , Mice , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , CA1 Region, Hippocampal/metabolism
4.
Hippocampus ; 33(6): 745-758, 2023 06.
Article in English | MEDLINE | ID: mdl-36965045

ABSTRACT

The hippocampal CA2 region has received greater attention in recent years due to its fundamental role in social memory and hippocampus-dependent memory processing. Unlike entorhinal cortical inputs, the Schaffer collateral inputs to CA2 do not support activity-dependent long-term potentiation (LTP), which serves as the basis for long-term memories. This LTP-resistant zone also expresses genes that restrict plasticity. With the aim of exploring social interaction and sociability in rats that were subjected to juvenile stress, we addressed questions about how the neural circuitry is altered and its effects on social behavior. Although there was induction of LTP in both Schaffer collateral and entorhinal cortical pathways in juvenile-stressed rats, LTP declined in both pathways after 2-3 h. Moreover, exogenous bath application of substance P, a neuropeptide that resulted in slow onset long-lasting potentiation in control animals while it failed to induce LTP in juvenile-stressed rats. Our study reveals that juvenile-stressed rats show behavioral and cellular abnormalities with a long-lasting impact in adulthood.


Subject(s)
CA2 Region, Hippocampal , Long-Term Potentiation , Animals , Rats , CA2 Region, Hippocampal/physiology , Entorhinal Cortex , Hippocampus , Memory , Neuronal Plasticity
5.
Cereb Cortex ; 33(3): 676-690, 2023 01 05.
Article in English | MEDLINE | ID: mdl-35253866

ABSTRACT

The amygdala is known to modulate hippocampal synaptic plasticity. One role could be an immediate effect of basolateral amygdala (BLA) in priming synaptic plasticity in the hippocampus. Another role could be through associative synaptic co-operation and competition that triggers events involved in the maintenance of synaptic potentiation. We present evidence that the timing and activity level of BLA stimulation are important factors for the induction and maintenance of long-term potentiation (LTP) in ventral hippocampal area CA1. A 100 Hz BLA co-stimulation facilitated the induction of LTP, whereas 200 Hz co-stimulation attenuated induction. A 100 Hz BLA co-stimulation also caused enhanced persistence, sufficient to prevent synaptic competition. This maintenance effect is likely through translational mechanisms, as mRNA expression of primary response genes was unaffected, whereas protein level of plasticity-related products was increased. Further understanding of the neural mechanisms of amygdala modulation on hippocampus could provide insights into the mechanisms of emotional disorders.


Subject(s)
Basolateral Nuclear Complex , Neuronal Plasticity , Neuronal Plasticity/physiology , Hippocampus/physiology , Long-Term Potentiation/physiology , Amygdala/physiology , Electric Stimulation
6.
Semin Cell Dev Biol ; 139: 111-120, 2023 04.
Article in English | MEDLINE | ID: mdl-35431138

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive decline. Synaptic impairment is one of the first events to occur in the progression of this disease. Synaptic plasticity and cellular association of various plastic events have been shown to be affected in AD models. Nogo-A, a well-known axonal growth inhibitor with a recently discovered role as a plasticity suppressor, and its main receptor Nogo-66 receptor 1 (NGR1) have been found to be overexpressed in the hippocampus of Alzheimer's patients. However, the role of Nogo-A and its receptor in the pathology of AD is still widely unknown. In this work we set out to investigate whether Nogo-A is working as a plasticity suppressor in AD. Our results show that inhibition of the Nogo-A pathway via the Nogo-R antibody in an Alzheimer's mouse model, APP/PS1, leads to the restoration of both synaptic plasticity and associativity in a protein synthesis and NMDR-dependent manner. We also show that inhibition of the p75NTR pathway, which is strongly associated with NGR1, restores synaptic plasticity as well. Mechanistically, we propose that the restoration of synaptic plasticity in APP/PS1 via inhibition of the Nogo-A pathway is due to the modulation of the RhoA-ROCK2 pathway and increase in plasticity related proteins. Our study identifies Nogo-A as a plasticity suppressor in AD models hence targeting Nogo-A could be a promising strategy to understanding AD pathology.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Animals , Alzheimer Disease/metabolism , Nogo Proteins/metabolism , Mice, Transgenic , Neuronal Plasticity/physiology , Disease Models, Animal , Amyloid beta-Protein Precursor/genetics
7.
Mol Psychiatry ; 28(3): 1312-1326, 2023 03.
Article in English | MEDLINE | ID: mdl-36577843

ABSTRACT

We recently nominated cytokine signaling through the Janus-kinase-signal transducer and activator of transcription (JAK/STAT) pathway as a potential AD drug target. As hydroxychloroquine (HCQ) has recently been shown to inactivate STAT3, we hypothesized that it may impact AD pathogenesis and risk. Among 109,124 rheumatoid arthritis patients from routine clinical care, HCQ initiation was associated with a lower risk of incident AD compared to methotrexate initiation across 4 alternative analyses schemes addressing specific types of biases including informative censoring, reverse causality, and outcome misclassification (hazard ratio [95% confidence interval] of 0.92 [0.83-1.00], 0.87 [0.81-0.93], 0.84 [0.76-0.93], and 0.87 [0.75-1.01]). We additionally show that HCQ exerts dose-dependent effects on late long-term potentiation (LTP) and rescues impaired hippocampal synaptic plasticity prior to significant accumulation of amyloid plaques and neurodegeneration in APP/PS1 mice. Additionally, HCQ treatment enhances microglial clearance of Aß1-42, lowers neuroinflammation, and reduces tau phosphorylation in cell culture-based phenotypic assays. Finally, we show that HCQ inactivates STAT3 in microglia, neurons, and astrocytes suggesting a plausible mechanism associated with its observed effects on AD pathogenesis. HCQ, a relatively safe and inexpensive drug in current use may be a promising disease-modifying AD treatment. This hypothesis merits testing through adequately powered clinical trials in at-risk individuals during preclinical stages of disease progression.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/genetics , Hydroxychloroquine/therapeutic use , Amyloid beta-Protein Precursor/genetics , Mice, Transgenic , Phenotype , Disease Models, Animal , Amyloid beta-Peptides/metabolism
8.
Proc Natl Acad Sci U S A ; 119(32): e2203883119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35914168

ABSTRACT

L-type CaV1.3 calcium channels are expressed on the dendrites and soma of neurons, and there is a paucity of information about its role in hippocampal plasticity. Here, by genetic targeting to ablate CaV1.3 RNA editing, we demonstrate that unedited CaV1.3ΔECS mice exhibited improved learning and enhanced long-term memory, supporting a functional role of RNA editing in behavior. Significantly, the editing paradox that functional recoding of CaV1.3 RNA editing sites slows Ca2+-dependent inactivation to increase Ca2+ influx but reduces channel open probability to decrease Ca2+ influx was resolved. Mechanistically, using hippocampal slice recordings, we provide evidence that unedited CaV1.3 channels permitted larger Ca2+ influx into the hippocampal pyramidal neurons to bolster neuronal excitability, synaptic transmission, late long-term potentiation, and increased dendritic arborization. Of note, RNA editing of the CaV1.3 IQ-domain was found to be evolutionarily conserved in mammals, which lends support to the importance of the functional recoding of the CaV1.3 channel in brain function.


Subject(s)
Calcium Channels, L-Type , Hippocampus , Neuronal Plasticity , RNA Editing , Animals , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Hippocampus/metabolism , Mammals/metabolism , Mice , Neuronal Plasticity/genetics , Neurons/metabolism , Pyramidal Cells/metabolism
9.
Aging Cell ; 21(9): e13675, 2022 09.
Article in English | MEDLINE | ID: mdl-35962576

ABSTRACT

The master epigenetic regulator lysine acetyltransferase (KAT) p300/CBP plays a pivotal role in neuroplasticity and cognitive functions. Recent evidence has shown that in several neurodegenerative diseases, including Alzheimer's disease (AD), the expression level and function of p300/CBP are severely compromised, leading to altered gene expression causing pathological conditions. Here, we show that p300/CBP activation by a small-molecule TTK21, conjugated to carbon nanosphere (CSP) ameliorates Aß-impaired long-term potentiation (LTP) induced by high-frequency stimulation, theta burst stimulation, and synaptic tagging/capture (STC). This functional rescue was correlated with CSP-TTK21-induced changes in transcription and translation. Mechanistically, we observed that the expression of a large number of synaptic plasticity- and memory-related genes was rescued, presumably by the restoration of p300/CBP mediated acetylation. Collectively, these results suggest that small-molecule activators of p300/CBP could be a potential therapeutic molecule for neurodegenerative diseases like AD.


Subject(s)
Nanospheres , Acetylation , Acetyltransferases/metabolism , Carbon/metabolism , Glucose/metabolism , Hippocampus/metabolism , Histones/metabolism , Pyramidal Cells/metabolism
11.
J Alzheimers Dis ; 86(4): 1611-1616, 2022.
Article in English | MEDLINE | ID: mdl-35253770

ABSTRACT

Alzheimer's disease (AD) is characterized by memory and cognitive deficits that in part are related to a diminished ability to activity-dependent synaptic plasticity. In AD, an attenuated long-term potentiation has been correlated with a deficit of synaptic plasticity-relevant proteins and protein turnover. The ubiquitin-proteasome system (UPS) critically regulates the protein turnover and contributes to dynamic changes of the protein milieu within synapses. In AD, UPS aberration has been implicated in inadequate proteostasis and synaptic malfunction. However, here we show that the inhibition of proteasome-mediated protein degradation by MG132 or lactacystin restored an impaired activity-dependent synaptic plasticity in an AD-like mouse model. In this whole-cell voltage-clamp study, we provided evidence that an amelioration of long-term plasticity by modulating UPS activity in pyramidal neurons.


Subject(s)
Alzheimer Disease , Alzheimer Disease/metabolism , Animals , Hippocampus/metabolism , Humans , Mice , Mice, Transgenic , Proteasome Endopeptidase Complex/metabolism , Pyramidal Cells/metabolism , Ubiquitin/metabolism
12.
Ageing Res Rev ; 75: 101567, 2022 03.
Article in English | MEDLINE | ID: mdl-35051645

ABSTRACT

Aging and age-related neurodegenerative diseases have become one of the major concerns in modern times as cognitive abilities tend to decline when we get older. It is well known that the main cause of this age-related cognitive deficit is due to aberrant changes in cellular, molecular circuitry and signaling pathways underlying synaptic plasticity and neuronal connections. The p75 neurotrophin receptor (p75NTR) is one of the important mediators regulating the fate of the neurons in the nervous system. Its importance in neuronal apoptosis is well documented. However, the mechanisms involving the regulation of p75NTR in synaptic plasticity and cognitive function remain obscure, although cognitive impairment has been associated with a higher expression of p75NTR in neurons. In this review, we discuss the current understanding of how neurons are influenced by p75NTR function to maintain normal neuronal synaptic strength and connectivity, particularly to support learning and memory in the hippocampus. We then discuss the age-associated alterations in neurophysiological mechanisms of synaptic plasticity and cognitive function. Furthermore, we also describe current evidence that has begun to elucidate how p75NTR regulates synaptic changes in aging and age-related neurodegenerative diseases, focusing on the hippocampus. Elucidating the role that p75NTR signaling plays in regulating synaptic plasticity will contribute to a better understanding of cognitive processes and pathological conditions. This will in turn provide novel approaches to improve therapies for the treatment of neurological diseases in which p75NTR dysfunction has been demonstrated.


Subject(s)
Neurodegenerative Diseases , Receptor, Nerve Growth Factor , Aging , Animals , Hippocampus/metabolism , Humans , Mice , Mice, Inbred C57BL , Neurodegenerative Diseases/metabolism , Receptor, Nerve Growth Factor/metabolism
13.
Int J Neuropsychopharmacol ; 25(7): 576-589, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35089327

ABSTRACT

BACKGROUND: Exposure to juvenile stress was found to have long-term effects on the plasticity and quality of associative memory in adulthood, but the underlying mechanisms are still poorly understood. METHODS: Three- to four week-old male Wistar rats were subjected to a 3-day juvenile stress paradigm. Their electrophysiological correlates of memory using the adult hippocampal slice were inspected to detect alterations in long-term potentiation and synaptic tagging and capture model of associativity. These cellular alterations were tied in with the behavioral outcome by subjecting the rats to a step-down inhibitory avoidance paradigm to measure strength in their memory. Given the role of epigenetic response in altering plasticity as a repercussion of juvenile stress, we aimed to chart out the possible epigenetic marker and its regulation in the long-term memory mechanisms using quantitative reverse transcription polymerase chain reaction. RESULTS: We demonstrate that even long after the elimination of actual stressors, an inhibitory metaplastic state is evident, which promotes synaptic competition over synaptic cooperation and decline in latency of associative memory in the behavioral paradigm despite the exposure to novelty. Mechanistically, juvenile stress led to a heightened expression of the epigenetic marker G9a/GLP complex, which is thus far ascribed to transcriptional silencing and goal-directed behavior. CONCLUSIONS: The blockade of the G9a/GLP complex was found to alleviate deficits in long-term plasticity and associative memory during the adulthood of animals exposed to juvenile stress. Our data provide insights on the long-term effects of juvenile stress that involve epigenetic mechanisms, which directly impact long-term plasticity, synaptic tagging and capture, and associative memory.


Subject(s)
CA1 Region, Hippocampal , Pyramidal Cells , Animals , Epigenesis, Genetic , Hippocampus/physiology , Long-Term Potentiation/physiology , Male , Neuronal Plasticity , Rats , Rats, Wistar
14.
FEBS J ; 289(8): 2176-2201, 2022 04.
Article in English | MEDLINE | ID: mdl-34109726

ABSTRACT

Synapses between neurons are malleable biochemical structures, strengthening and diminishing over time dependent on the type of information they receive. This phenomenon known as synaptic plasticity underlies learning and memory, and its different forms, long-term potentiation (LTP) and long-term depression (LTD), perform varied cognitive roles in reinforcement, relearning and associating memories. Moreover, both LTP and LTD can exist in an early transient form (early-LTP/LTD) or a late persistent form (late-LTP/LTD), which are triggered by different induction protocols, and also differ in their dependence on protein synthesis and the involvement of key molecular players. Beyond homosynaptic modifications, synapses can also interact with one another. This is encapsulated in the synaptic tagging and capture hypothesis (STC), where synapses expressing early-LTP/LTD present a 'tag' that can capture the protein synthesis products generated during a temporally proximal late-LTP/LTD induction. This 'tagging' phenomenon forms the framework of synaptic interactions in various conditions and accounts for the cellular basis of the time-dependent associativity of short-lasting and long-lasting memories. All these synaptic modifications take place under controlled neuronal conditions, regulated by subcellular elements such as epigenetic regulation, proteasomal degradation and neuromodulatory signals. Here, we review current understanding of the different forms of synaptic plasticity and its regulatory mechanisms in the hippocampus, a brain region critical for memory formation. We also discuss expression of plasticity in hippocampal CA2 area, a long-overlooked narrow hippocampal subfield and the behavioural correlate of STC. Lastly, we put forth perspectives for an integrated view of memory representation in synapses.


Subject(s)
Epigenesis, Genetic , Synapses , Hippocampus/physiology , Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Synapses/metabolism
15.
Oxf Open Neurosci ; 1: kvac002, 2022.
Article in English | MEDLINE | ID: mdl-38596711

ABSTRACT

Synaptic plasticity in the hippocampal Cornu Ammonis (CA) subfield, CA2, is tightly regulated. However, CA2 receives projections from several extra-hippocampal modulatory nuclei that release modulators that could serve to fine-tune plasticity at CA2 synapses. Considering that there are afferent projections from the serotonergic median raphe to hippocampal CA2, we hypothesized that the neuromodulator serotonin (5-hydroxytryptamine; 5-HT) could modulate CA2 synaptic plasticity. Here, we show that bath-application of serotonin facilitates the persistence of long-term depression (LTD) at the CA3 Schaffer collateral inputs to CA2 neurons (SC-CA2) when coupled to a weak low frequency electrical stimulation, in acute rat hippocampal slices. The observed late-LTD at SC-CA2 synapses was protein synthesis- and N-methyl-D-aspartate receptor (NMDAR)-dependent. Moreover, this late-LTD at SC-CA2 synapses paves way for the associative persistence of transient forms of LTD as well as long-term potentiation to long-lasting late forms of plasticity through synaptic tagging and cross-tagging respectively, at the entorhinal cortical synapses of CA2. We further observe that the 5-HT-mediated persistence of activity-dependent LTD at SC-CA2 synapses is blocked in the presence of the brain-derived neurotrophic factor scavenger, TrkB/Fc.

16.
Aging Cell ; 20(12): e13502, 2021 12.
Article in English | MEDLINE | ID: mdl-34796608

ABSTRACT

Clinical studies have shown that female brains are more predisposed to neurodegenerative diseases such as Alzheimer's disease (AD), but the cellular and molecular mechanisms behind this disparity remain unknown. In several mouse models of AD, synaptic plasticity dysfunction is an early event and appears before significant accumulation of amyloid plaques and neuronal degeneration. However, it is unclear whether sexual dimorphism at the synaptic level contributes to the higher risk and prevalence of AD in females. Our studies on APP/PS1 (APPSwe/PS1dE9) mouse model show that AD impacts hippocampal long-term plasticity in a sex-specific manner. Long-term potentiation (LTP) induced by strong tetanic stimulation (STET), theta burst stimulation (TBS) and population spike timing-dependent plasticity (pSTDP) show a faster decay in AD females compared with age-matched AD males. In addition, behavioural tagging (BT), a model of associative memory, is specifically impaired in AD females with a faster decay in memory compared with males. Together with the plasticity and behavioural data, we also observed an upregulation of neuroinflammatory markers, along with downregulation of transcripts that regulate cellular processes associated with synaptic plasticity and memory in females. Immunohistochemistry of AD brains confirms that female APP/PS1 mice carry a higher amyloid plaque burden and have enhanced microglial activation compared with male APP/PS1 mice. Their presence in the diseased mice also suggests a link between the impairment of LTP and the upregulation of the inflammatory response. Overall, our data show that synaptic plasticity and associative memory impairments are more prominent in females and this might account for the faster progression of AD in females.


Subject(s)
Alzheimer Disease/physiopathology , Memory Disorders/physiopathology , Neuronal Plasticity/immunology , Animals , Disease Models, Animal , Female , Mice , Sex Factors
17.
J Neurosci ; 41(44): 9082-9098, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34561235

ABSTRACT

Hippocampal CA2, an inconspicuously positioned area between the well-studied CA1 and CA3 subfields, has captured research interest in recent years because of its role in social memory formation. However, the role of cholinergic inputs to the CA2 area for the regulation of synaptic plasticity remains to be fully understood. We show that cholinergic receptor activation with the nonselective cholinergic agonist, carbachol (CCh), triggers a protein synthesis-dependent and NMDAR-independent long-term synaptic depression (CCh-LTD) at entorhinal cortical (EC)-CA2 and Schaffer collateral (SC)-CA2 synapses in the hippocampus of adult male Wistar rats. The activation of muscarinic acetylcholine receptors (mAChRs) is critical for the induction of CCh-LTD with the results suggesting an involvement of M3 and M1 mAChRs in the early facilitation of CCh-LTD, while nicotinic AChR activation plays a role in the late maintenance of CCh-LTD at CA2 synapses. Remarkably, we find that CCh priming lowers the threshold for the subsequent induction of persistent long-term potentiation (LTP) of synaptic transmission at EC-CA2 and the plasticity-resistant SC-CA2 pathways. The effects of such a cholinergic-dependent synaptic depression on subsequent LTP at EC-CA2 and SC-CA2 synapses have not been previously explored. Collectively, the results demonstrate that CA2 synaptic learning rules are regulated in a metaplastic manner, whereby modifications triggered by prior cholinergic stimulation can dictate the outcome of future plasticity events. Moreover, the reinforcement of LTP at EC inputs to CA2 following the priming stimulus coexists with concurrent sustained CCh-LTD at the SC-CA2 pathway and is dynamically scaled by modulation of SC-CA2 synaptic transmission.SIGNIFICANCE STATEMENT The release of the neuromodulator acetylcholine is critically involved in processes of hippocampus-dependent memory formation. Cholinergic afferents originating in the medial septum and diagonal bands of Broca terminating in the hippocampal area CA2 might play an important role in the modulation of area-specific synaptic plasticity. Our findings demonstrate that cholinergic receptor activation induces an LTD of synaptic transmission at entorhinal cortical- and Schaffer collateral-CA2 synapses. This cholinergic activation-mediated LTD displays a bidirectional metaplastic switch to LTP on a future timescale. This suggests that such bidirectional synaptic modifications triggered by the dynamic modulation of tonic cholinergic receptor activation may support the formation of CA2-dependent memories given the increased hippocampal cholinergic tone during active wakefulness observed in exploratory behavior.


Subject(s)
CA2 Region, Hippocampal/metabolism , Long-Term Potentiation , Receptors, Cholinergic/metabolism , Animals , CA2 Region, Hippocampal/physiology , Carbachol/pharmacology , Cholinergic Agonists/pharmacology , Entorhinal Cortex/metabolism , Entorhinal Cortex/physiology , Long-Term Synaptic Depression , Male , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism
20.
Aging Cell ; 20(2): e13305, 2021 02.
Article in English | MEDLINE | ID: mdl-33448137

ABSTRACT

The plasticity mechanisms in the nervous system that are important for learning and memory are greatly impacted during aging. Notably, hippocampal-dependent long-term plasticity and its associative plasticity, such as synaptic tagging and capture (STC), show considerable age-related decline. The p75 neurotrophin receptor (p75NTR ) is a negative regulator of structural and functional plasticity in the brain and thus represents a potential candidate to mediate age-related alterations. However, the mechanisms by which p75NTR affects synaptic plasticity of aged neuronal networks and ultimately contribute to deficits in cognitive function have not been well characterized. Here, we report that mutant mice lacking the p75NTR were resistant to age-associated changes in long-term plasticity, associative plasticity, and associative memory. Our study shows that p75NTR is responsible for age-dependent disruption of hippocampal homeostatic plasticity by modulating several signaling pathways, including BDNF, MAPK, Arc, and RhoA-ROCK2-LIMK1-cofilin. p75NTR may thus represent an important therapeutic target for limiting the age-related memory and cognitive function deficits.


Subject(s)
Aging , Hippocampus/metabolism , Memory , Neuronal Plasticity , Receptors, Nerve Growth Factor/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Nerve Growth Factor/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...