Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 143: 106984, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056389

ABSTRACT

Inflammation is a multifaceted phenomenon triggered by potentially active mediators acutely released arachidonic acid metabolites partially in lipoxygenase (LOX) pathway which are primarily accountable for causing several diseases in humans. It is widely believed that an inhibitor of the LOX pathway represents a rational approach for designing more potent antiinflammatory leads with druggable super safety profiles. In our continual efforts in search for anti-LOX molecules, the present work was to design a new series of N-alkyl/aralkyl/aryl derivatives (7a-o) of 4-phenyl-5-(1-phenylcarbamoylpiperidine)-4H-1,2,4-triazole-3-thiol which was commenced in seriate formation of phenylcarbamoyl derivative (1), hydrazide (2), semicarbazide (3) and 4-phenyl-5-(1-phenylcarbamoylpiperidine)-4H-1,2,4-triazole-3-thiol (4). The aimed compounds were obtained by reacting 4-phenyl-5-(1-phenylcarbamoylpiperidine)-4H-1,2,4-triazole-3-thiol with assorted N-alkyl/aralkyl/aryl electrophiles. All compounds were characterized by FTIR, 1H-, 13C-NMR spectroscopy, EI-MS and HR-EI-MS spectrometry and screened against soybean 15-LOX for their inhibitory potential using chemiluminescence method. All the compounds except 7m and 7h inhibited the said enzyme remarkably. Compounds 7c,7l, 7j and 7a displayed potent inhibitions ranging from IC50 1.92 ± 0.13 µM to 7.65 ± 0.12 µM. Other analogues 7g, 7o, 7e, 7b, 7d, 7k and 7n revealed excellent inhibitory values ranging from IC50 12.45 ± 0.38 µM to 24.81 ± 0.47 µM. All these compounds did not reveal DPPH radical scavenging activity. Compounds 7i-o maintained > 90 % human blood mononuclear cells (MNCs) viability at 0.125 mM as assayed by MTT whilst others were found toxic. Pharmacokinetic profiles predicted good oral bioavailability and drug-likeness properties of the active scaffolds. SAR investigations showed that phenyl substituted analogue on amide side decreased inhibitory activity due to inductive and mesomeric effects while the mono-alkyl substituted analogues were more active than disubstituted ones and ortho substituted analogues were more potent than meta substituted ones. MD simulation predicted the stability of the 7c ligand and receptor complex as shown by their relative RMSD (root mean square deviation) values. Molecular docking studies displayed hydrogen bonding between the compounds and the enzyme with Arg378 which was common in 7n, 7g, 7h and baicalein. In 7a and quercetin, hydrogen bonding was established through Asn375. RMSD values exhibited good inhibitory profiles in the order quercetin (0.73 Å) < 7 g < baicalein < 7a < 7n < 7 h (1.81 Å) and the binding free energies followed similar pattern. Density functional theory (DFT) data established good correlation between the active compounds and significant activity was associated with more stabilized LUMO (lowest unoccupied molecular orbitals) orbitals. Nevertheless, the present studies declare active analogues like 7c, 7 l, 7a, 7j as leads. Work is ongoing in derivatizing active molecules to explore more effective leads as 15-LOX inhibitors as antiinflammatory agents.


Subject(s)
Lipoxygenase Inhibitors , Quercetin , Triazoles , Humans , Molecular Docking Simulation , Structure-Activity Relationship , Density Functional Theory , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase Inhibitors/chemistry , Sulfhydryl Compounds , Molecular Structure
2.
Chem Biodivers ; 20(12): e202301190, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37963090

ABSTRACT

The Epidermal Growth Factor Receptor (EGFR) is an important therapeutic target for the treatment of a variety of epithelial malignancies, including breast cancer, in which EGFR is aberrantly expressed.The fluorocyclopentenyl-purine-pyrimidines derivatives, which have previously been described as powerful compounds against breast cancer, were selected to investigate their potential against EGFR using computational tools in an effort to obtain potent inhibitors with fewer adverse effects. The molecule's chemical reactivity and stability were assessed by determining the HOMO-LUMO energy gap using density functional theory (DFT) calculations. Among all the selected compounds, PU4 displayed a HOMO-LUMO gap of 0.191 eV. Additionally, molecular docking analysis was performed to assess the binding affinities of PU4 within the active pocket of EGFR-TK. The compound PU4 showed potent interactions with EGFR exhibiting -32.3 kJ/mol binding energy which was found best as compared to gefitinib i. e., -27.4 kJ/mol which was further validated by molecular dynamics simulations and ADMET analysis. The results of these analyses indicate that the top hits obtained from the virtual screening possess the ability to act as effective EGFR inhibitor. Therefore, it is recommended to further investigate the inhibitory potential of these identified compounds using in vitro and in vivo approaches.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , ErbB Receptors/metabolism , Molecular Dynamics Simulation , Purines , Pyrimidines/pharmacology , Pyrimidines/chemistry
3.
Environ Pollut ; 336: 122473, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37659632

ABSTRACT

While the study of bioaerosols has a long history, it has garnered heightened interest in the past few years, focusing on both culture-dependent and independent sampling and analysis approaches. Observations have been made regarding the seasonal fluctuations in microbial communities and their connection to particular ambient atmospheric factors. The study of airborne microbial communities is important in public health and atmospheric processes. Nevertheless, the establishment of standardized protocols for evaluating airborne microbial communities and utilizing microbial taxonomy as a means to identify distinct bioaerosols sources and seasonal patterns remains relatively unexplored. This article discusses the challenges and limitations of ambient bioaerosols sampling and analysis, including the lack of standardized methods and the heterogeneity of sources. Future prospects in the field of bioaerosols, including the use of high-throughput sequencing technologies, omics studies, spectroscopy and fluorescence-based monitoring to provide comprehensive incite on metabolic capacity, and activity are also presented. Furthermore, the review highlights the factors that affect bioaerosols composition, including seasonality, atmospheric conditions, and pollution levels. Overall, this review provides a valuable resource for researchers, policymakers, and stakeholders interested in understanding and managing bioaerosols in various environments.


Subject(s)
Air Microbiology , Climate , Aerosols/analysis , Environmental Pollution/analysis , Public Health , Environmental Monitoring/methods
4.
Environ Pollut ; 336: 122401, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37598930

ABSTRACT

This study investigates the size distribution, microbial composition, and antibiotic resistance (ABR) of airborne bioaerosols at a suburban location in Doha, Qatar between October 2021 and January 2022. Samples were collected using an Andersen six-stage viable cascade impactor and a liquid impinger. Findings showed that the mean bacteria concentration (464 CFU/m3) was significantly higher than that of fungi (242 CFU/m3) during the study period. Both bacteria and fungi were most abundant in the aerodynamic size fractions of 1.10-2.21 µm, with peak concentrations observed in the mornings and lowest concentrations in the afternoons across all size fractions. A total of 24 different culturable species were identified, with the most abundant ones being Pasteurella pneumotropica (9.71%), Pantoea spp. 1 (8.73%), and Proteus penneri (7.77%) spp. At the phylum level, the bacterial community configurations during the autumn and winter seasons were nearly identical as revealed by molecular genomics, with Proteobacteria being the most predominant, followed by Firmicutes, Bacteroidetes, Acidobacteriota, and Planctomycetota. However, there was a significant variation in dominant genera between autumn and winter. The most abundant genera included Sphingomonas, Paraburkholderia, Comamonas, Bacillus, and Lysinibacillus. Several bacterial genera identified in this study have important public health and ecological implications, including the risk of respiratory tract infections. Furthermore, the study found that ABR was highest in December, with bioaerosols exhibiting resistance to at least 5 out of 10 antibiotics, and 100% resistance to Metronidazole in all samples. Metagenomics analysis revealed the presence of various airborne bacteria that were not detected through culture-dependent methods. This study provides valuable insights into the airborne microbial composition, temporal variability and ABR in the Arabian Gulf region.

5.
J Biomol Struct Dyn ; 41(21): 11987-11999, 2023.
Article in English | MEDLINE | ID: mdl-36617941

ABSTRACT

A new series of thiazolidinone linked 1,2,3-triazole hybrids 5a-h was designed and synthesized using the copper-catalyzed Huisgen azide-alkyne cycloaddition (CuAAC) between thiazolidinone linked alkyne and aromatic azides. The structures of the newly synthesized compounds were established by NMR (1H and 13C) and HRMS. The targeted thiazolidinone-1,2,3-triazole hybrids were evaluated for their cytotoxic activity against four human cancer cell lines, including fibrosarcoma (HT-1080), lung carcinoma (A-549), and breast carcinoma (MCF-7 and MDA-MB-231) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliun bromide (MTT). The obtained data showed that most of these compounds have moderate anti-proliferative activity with IC50 values between 10.26 ± 0.71 and 53.93 ± 1.20 µM. The compound 5a exhibited higher activity with an IC50 value of 10.26 ± 0.71 µM, compared to 5d with an IC50 value of 11.56 ± 1.98 µM for the HT-1080 and MCF-7 cancer cells line, respectively. Moreover, Annexin-V apoptosis was assessed by flow cytometry for hybrid compounds 5a and 5d against HT-1080 and MCF-7 competitor cell lines, as they increase the level of active caspase 3/7. The experimental results were further confirmed by docking studies followed by molecular dynamic simulations. Both the potent derivatives i.e. 5a and 5d have comparable docking scores and MD simulations results showed that the docked complex of 5a is somewhat more stable than 5d primarily for protein p53. The ADMET profile of both derivatives established their safety zone and drug-like potential.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Molecular Dynamics Simulation , Humans , Molecular Structure , Structure-Activity Relationship , Cell Line, Tumor , Molecular Docking Simulation , Triazoles/pharmacology , Triazoles/chemistry , Alkynes/pharmacology , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL
...