Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Rev Drug Discov ; 16(12): 811-812, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29026211

ABSTRACT

The sharing of legacy preclinical safety data among pharmaceutical companies and its integration with other information sources offers unprecedented opportunities to improve the early assessment of drug safety. Here, we discuss the experience of the eTOX project, which was established through the Innovative Medicines Initiative to explore this possibility.


Subject(s)
Drug Evaluation, Preclinical/methods , Drug Industry/methods , Drug-Related Side Effects and Adverse Reactions , Information Dissemination , Humans , Risk Assessment/methods
2.
Toxicol Appl Pharmacol ; 252(2): 85-96, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21315101

ABSTRACT

The main goal of the present work was to better understand the molecular mechanisms underlying liver hypertrophy (LH), a recurrent finding observed following acute or repeated drug administration to animals, using transcriptomic technologies together with the results from conventional toxicology methods. Administration of 5 terminated proprietary drug candidates from participating companies involved in the EU Innomed PredTox Project or the reference hepatotoxicant troglitazone to rats for up to a 14-day duration induced LH as the main liver phenotypic toxicity outcome. The integrated analysis of transcriptomic liver expression data across studies turned out to be the most informative approach for the generation of mechanistic models of LH. In response to a xenobiotic stimulus, a marked increase in the expression of xenobiotic metabolizing enzymes (XME) was observed in a subset of 4 studies. Accumulation of these newly-synthesized proteins within the smooth endoplasmic reticulum (SER) would suggest proliferation of this organelle, which most likely is the main molecular process underlying the LH observed in XME studies. In another subset of 2 studies (including troglitazone), a marked up-regulation of genes involved in peroxisomal fatty acid ß-oxidation was noted, associated with induction of genes involved in peroxisome proliferation. Therefore, an increase in peroxisome abundance would be the main mechanism underlying LH noted in this second study subset. Together, the use of transcript profiling provides a means to generate putative mechanistic models underlying the pathogenesis of liver hypertrophy, to distinguish between subtle variations in subcellular organelle proliferation and creates opportunities for improved mechanism-based risk assessment.


Subject(s)
Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/pathology , Chromans/toxicity , Gene Expression Profiling/methods , Gene Regulatory Networks/physiology , Thiazolidinediones/toxicity , Animals , Hypertrophy , Male , Proteomics/methods , Rats , Rats, Wistar , Troglitazone
3.
Mutat Res ; 689(1-2): 21-49, 2010 Jul 07.
Article in English | MEDLINE | ID: mdl-20466008

ABSTRACT

During the last decade, there has been clear progress in using threshold in risk assessment but its acceptance by scientists is still under debate. Contrary to indirect DNA-damaging agents, DNA-reactive agents have been assumed to have a non-threshold mode of action, as they directly induce DNA lesions that potentially can be converted into mutations. However, in recent years there is a growing number of data establishing threshold doses even for these DNA-reactive compounds. Indeed, there are several defence and repair mechanisms that provide protection and that may be responsible for genotoxic thresholds. In this context, we recently showed that DNA-oxidizing agents exhibit a thresholded dose-response in vitro with respect to chromosomal alterations. We have hypothesized the involvement of different cellular responses whose nature and efficiency depend on the stress level. The aim of this study was to develop a more complete understanding of these underlying mechanisms. We investigated global gene expression profiles of human lymphoblastoid TK6 cells after exposure to potassium bromate and hydrogen peroxide (via glucose oxidase). Cells were treated for 1h and mRNAs were isolated either immediately at the end of the treatment or after a 23-h recovery period. Our results showed that cells have developed elaborate cellular responses to oxidative stress in order to maintain genomic integrity. Many of altered genes were redox-sensitive transcription factors such as p53, NF-kappaB, AP-1 and Nrf2. Their downstream target genes and signalling pathways were subsequently activated leading mainly to the induction of antioxidant defenses, inflammation, cell cycle arrest, DNA repair and cell death. Overall, our study allowed the identification of key events involved in the thresholded response observed after DNA-oxidizing agents exposure and shows the usefulness of the combination of standard in vitro genotoxicity assays with gene expression profiling technology to determine modes of action, particularly for critical risk assessment.


Subject(s)
DNA/drug effects , Gene Expression Profiling , Oxidants/pharmacology , Oxidative Stress , Bromates/toxicity , Cell Cycle , Cell Death/drug effects , Cell Line , DNA Repair , Dose-Response Relationship, Drug , Humans , Hydrogen Peroxide/toxicity , Lipid Metabolism/drug effects , Lymphocytes , Microarray Analysis , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...