Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 420
Filter
1.
In Vivo ; 38(3): 1042-1048, 2024.
Article in English | MEDLINE | ID: mdl-38688646

ABSTRACT

BACKGROUND/AIM: Oral epithelial cells serve as the primary defense against microbial exposure in the oral cavity, including the fungus Candida albicans. Dectin-1 is crucial for recognition of ß-glucan in fungi. However, expression and function of Dectin-1 in oral epithelial cells remain unclear. MATERIALS AND METHODS: We assessed Dectin-1 expression in Ca9-22 (gingiva), HSC-2 (mouth), HSC-3 (tongue), and HSC-4 (tongue) human oral epithelial cells using flow cytometry and real-time polymerase chain reaction. Cell treated with ß-glucan-rich zymosan were evaluated using real-time polymerase chain reaction. Phosphorylation of spleen-associated tyrosine kinase (SYK) was analyzed by western blotting. RESULTS: Dectin-1 was expressed in all four cell types, with high expression in Ca9-22 and HSC-2. In Ca9-22 cells, exposure to ß-glucan-rich zymosan did not alter the mRNA expression of chemokines nor of interleukin (IL)6, IL8, IL1ß, IL17A, and IL17F. Zymosan induced the expression of antimicrobial peptides ß-defensin-1 and LL-37, but not S100 calcium-binding protein A8 (S100A8) and S100A9. Furthermore, the expression of cylindromatosis (CYLD), a negative regulator of nuclear factor kappa B (NF-κB) signaling, was induced. In HSC-2 cells, zymosan induced the expression of IL17A. The expression of tumor necrosis factor alpha-induced protein 3 (TNFAIP3), a negative regulator of NF-κB signaling, was also induced. Expression of other cytokines and antimicrobial peptides remained unchanged. Zymosan induced phosphorylation of SYK in Ca9-22 cells, as well as NF-κB. CONCLUSION: Oral epithelial cells express Dectin-1 and recognize ß-glucan, which activates SYK and induces the expression of antimicrobial peptides and negative regulators of NF-κB, potentially maintaining oral homeostasis.


Subject(s)
Epithelial Cells , Lectins, C-Type , NF-kappa B , Signal Transduction , Syk Kinase , Humans , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , NF-kappa B/metabolism , Syk Kinase/metabolism , Syk Kinase/genetics , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Cell Line , Zymosan/pharmacology , Cytokines/metabolism , Cytokines/genetics , Phosphorylation , Mouth Mucosa/metabolism , Mouth Mucosa/immunology , Pore Forming Cytotoxic Proteins/metabolism , Pore Forming Cytotoxic Proteins/genetics , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism
2.
In Vivo ; 38(3): 1236-1242, 2024.
Article in English | MEDLINE | ID: mdl-38688640

ABSTRACT

BACKGROUND/AIM: Odontogenic maxillary sinusitis is a clinically popular disease, but radical surgery and endoscopic surgery are often required. In the present study, we compared for the first time the therapeutic efficacy of the extraction of causative teeth with or without irrigation of the extraction fossa. PATIENTS AND METHODS: A total of 60 patients underwent extraction of causative tooth. Among them, 34 patients underwent irrigation, while other 26 patients did not. Based on computed tomography (CT) images, treatment efficacy was quantified by the percentage of the remaining maxillary sinus mucosal lesions. The extent of therapeutic efficacy was evaluated following five grades, based on the percentage of remaining lesions: Grade 1 (0%) (disappearance of lesions), Grade 2 (roughly 10%), Grade 3 (roughly 30%), Grade 4 (approximately 50%) and Grade 5 (100%) (no improvement of the lesions). RESULTS: Irrigation significantly augmented the therapeutic efficacy of tooth extraction for maxillary sinus mucosal lesions (mean grade: decreasing from 3.27 to 1.35). CONCLUSION: The combination of tooth extraction and irrigation may contribute to the reduction of the necessity of surgery for the maxillary sinuses.


Subject(s)
Maxillary Sinusitis , Therapeutic Irrigation , Tooth Extraction , Humans , Male , Female , Maxillary Sinusitis/surgery , Maxillary Sinusitis/therapy , Maxillary Sinusitis/etiology , Middle Aged , Adult , Treatment Outcome , Aged , Therapeutic Irrigation/methods , Tomography, X-Ray Computed , Maxillary Sinus/surgery , Maxillary Sinus/diagnostic imaging
3.
In Vivo ; 38(2): 559-566, 2024.
Article in English | MEDLINE | ID: mdl-38418153

ABSTRACT

BACKGROUND/AIM: Enterococcus faecalis is the leading cause of endodontic treatment failures. Despite various conventional disinfection approaches, microorganisms often persist in root canals. Photodynamic therapy (PDT) is an adjunct antimicrobial strategy employing a nontoxic photosensitizer (PS) and light source. This study evaluated the antimicrobial effect of PDT using an Nd:YAG laser and resveratrol (RSV) with or without pigment, and confirmed that RSV is nontoxic as a PS. MATERIALS AND METHODS: We employed laser irradiation at a 3W output power, using RSV and red pigment as the PS, on an E. faecalis bacterial solution. Subsequently, colony-forming units were quantified. The impact of RSV on osteoblasts was measured using an MTT assay. RESULTS: E. faecalis counts declined after laser irradiation. The combined application of laser irradiation with RSV, red pigment, or both showed a reduction compared to no irradiation and control groups without RSV and red pigment. The 50% cytotoxic concentration against osteoblast cells from mice incubated with RSV for 48 h was 162 µM. The value with RSV and laser was 201 µM and that with RSV and red pigment was 199 µM. The value with RSV, laser and red pigment was 357 µM. CONCLUSION: The combination of Nd:YAG laser irradiation and RSV as the PS with pigment was efficacious for E. faecalis elimination without inducing any toxic effects on osteoblasts. This combination holds potential as a root canal irrigation strategy.


Subject(s)
Anti-Infective Agents , Lasers, Solid-State , Photochemotherapy , Animals , Mice , Lasers, Solid-State/therapeutic use , Enterococcus faecalis/radiation effects , Resveratrol/pharmacology , Biofilms/radiation effects , Root Canal Preparation , Photosensitizing Agents/pharmacology , Dental Pulp Cavity
4.
Front Pharmacol ; 15: 1325272, 2024.
Article in English | MEDLINE | ID: mdl-38303989

ABSTRACT

Oral cancer is a severe health problem that accounts for an alarmingly high number of fatalities worldwide. Withania somnifera (L.) Dunal has been extensively studied against various tumor cell lines from different body organs, rarely from the oral cavity. We thus investigated the cytotoxicity of W. somnifera fruits (W-F) and roots (W-R) hydromethanolic extracts and their chromatographic fractions against oral squamous cell carcinoma (OSCC) cell lines [Ca9-22 (derived from gingiva), HSC-2, HSC-3, and HSC-4 (derived from tongue)] and three normal oral mesenchymal cells [human gingival fibroblast (HGF), human periodontal ligament fibroblast (HPLF), and human pulp cells (HPC)] in comparison to standard drugs. The root polar ethyl acetate (W-R EtOAc) and butanol (W-R BuOH) fractions exhibited the strongest cytotoxicity against the Ca9-22 cell line (CC50 = 51.8 and 40.1 µg/mL, respectively), which is relatively the same effect as 5-FU at CC50 = 69.4 µM and melphalan at CC50 = 36.3 µM on the same cancer cell line. Flow cytometric analysis revealed changes in morphology as well as in the cell cycle profile of the W-R EtOAc and W-R BuOH-treated oral cancer Ca9-22 cells compared to the untreated control. The W-R EtOAc (125 µg/mL) exerted morphological changes and induced subG1 accumulation, suggesting apoptotic cell death. A UHPLC MS/MS analysis of the extract enabled the identification of 26 compounds, mainly alkaloids, withanolides, withanosides, and flavonoids. Pharmacophore-based inverse virtual screening proposed that BRD3 and CDK2 are the cancer-relevant targets for the annotated withanolides D (18) and O (12), and the flavonoid kaempferol (11). Molecular modeling studies highlighted the BRD3 and CDK2 as the most probable oncogenic targets of anticancer activity of these molecules. These findings highlight W. somnifera's potential as an affordable source of therapeutic agents for a range of oral malignancies.

5.
Medicines (Basel) ; 11(1)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38248717

ABSTRACT

Background: The objective of this study is to find novel antineoplastic agents that display greater toxicity to malignant cells than to neoplasms. In addition, the mechanisms of action of representative compounds are sought. This report describes the cytotoxicity of a number of dimers of 3,5-bis(benzylidene)-4-piperidones against human malignant cells (promyelocytic leukemia HL-60 and squamous cell carcinoma HSC-2, HSC-3, and HSC-4). Methods: Tumor specificity was evaluated by the selectivity index (SI), that is the ratio of the mean CC50 for human non-malignant oral cells (gingival fibroblasts, pulp cells, periodontal ligament fibroblasts) to that for malignant cells. Results: The compounds were highly toxic to human malignant cells. On the other hand, these molecules were less toxic to human non-malignant cells. In particular, a potent lead molecule, 3b, was identified. A QSAR study revealed that the placement of electron-releasing and hydrophilic substituents into the aryl rings led to increases in cytotoxic potencies. The modes of action of a lead compound discovered in this study designated 3b were the activation of caspases-3 and -7, as well as causing PARP1 cleavage and G2 arrest, followed by sub-G1 accumulation in the cell cycle. This compound also depolarized the mitochondrial membrane and generated reactive oxygen species in human colon carcinoma HCT116 cells. In conclusion, this study has revealed that, in general, the compounds described in this report are tumor-selective cytotoxins.

6.
Int J Mol Sci ; 24(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38139307

ABSTRACT

Plants contain a large number of small-molecule compounds that are useful for targeting human health and in drug discovery. Healthy bone metabolism depends on the balance between bone-forming osteoblast activity and bone-resorbing osteoclast activity. In an ongoing study searching for 22 plant extracts effective against osteoporosis, we found that the crude extract of Euptelea polyandra Sieb. et Zucc (E. polyandra) had osteogenic bioactivity. In this study, we isolated two compounds, isoquercitrin (1) and astragalin (2), responsible for osteogenic bioactivity in osteoblastic MC3T3-E1 cells from the leaf of E. polyandra using column chromatography and the spectroscopic technique. This is the first report to isolate astragalin from E. polyandra. Compounds (1) and (2) promoted osteoblast differentiation by increasing alkaline phosphatase (ALP) activity and alizarin red S stain-positive calcium deposition, while simultaneously suppressing tartrate-resistant acid phosphatase (TRAP)-positive osteoclast differentiation in RAW264.7 cells at non-cytotoxic concentrations. Isoquercitrin (1) and astragalin (2) increased the expression of osteoblastic differentiation genes, Osterix, ALP, and Osteoprotegerin in the MC3T3-E1 cells, while suppressing osteoclast differentiation genes, TRAP, Cathepsin K, and MMP 9 in the RAW264.7 cells. These compounds may be ideal targets for the treatment of osteoporosis due to their dual function of promoting bone formation and inhibiting bone resorption.


Subject(s)
Bone Resorption , Osteoporosis , Humans , Osteoclasts/metabolism , Osteogenesis , Osteoblasts/metabolism , Bone Resorption/metabolism , Cell Differentiation , Osteoporosis/drug therapy , Osteoporosis/metabolism
7.
Antioxidants (Basel) ; 12(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38001804

ABSTRACT

Polyphenols have a variety of phenolic hydroxyl and carbonyl functionalities that enable them to scavenge many oxidants, thereby preserving the human redox balance and preventing a number of oxidative stress-related chronic degenerative diseases. In our ongoing investigation of polyphenol-rich plants in search of novel molecules, we resumed the investigation of Lawsonia inermis L. (Lythraceae) or henna, a popular ancient plant with aesthetic and therapeutic benefits. The leaves' 70% aq acetone extract was fractionated on a Diaion HP-20 column with different ratios of H2O/an organic solvent. Multistep gel chromatographic fractionation and HPLC purification of the Diaion 75% aq MeOH and MeOH fractions led to a new compound (1) along with tannin-related metabolites, benzoic acid (2), benzyl 6'-O-galloyl-ß-D-glucopyranoside (3), and ellagic acid (4), which are first isolated from henna. Repeating the procedures on the Diaion 50% aq MeOH eluate led to the first-time isolation of two O-glucosidic ellagitannins, heterophylliin A (5), and gemin D (6), in addition to four known C-glycosidic ellagitannins, lythracin D (7), pedunculagin (8), flosin B (9), and lagerstroemin (10). The compound structures were determined through intensive spectroscopic investigations, including HRESIMS, 1D (1H and 13C) and 2D (1H-1H COSY, HSQC, HMBC, and NOESY) NMR, UV, [α]D, and CD experiments. The new structure of 1 was determined to be a megastigmane glucoside gallate; its biosynthesis from gallic acid and a ß-ionone, a degradative product of the common metabolite ß-carotin, was highlighted. Cytotoxicity investigations of the abundant ellagitannins revealed that lythracin D2 (7) and pedunculagin (8) are obviously more cytotoxic (tumor specificity = 2.3 and 2.8, respectively) toward oral squamous cell carcinoma cell lines (HSC-2, HSC-4, and Ca9-22) than normal human oral cells (HGF, HPC, and HPLF). In summary, Lawsonia inermis is a rich source of anti-oral cancer ellagitannins. Also, the several discovered polyphenolics highlighted here emphasize the numerous biological benefits of henna and encourage further clinical studies to profit from their antioxidant properties against oxidative stress-related disorders.

8.
Biomimetics (Basel) ; 8(7)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37999155

ABSTRACT

Assessing the biocompatibility of endodontic root-end filling materials through cell line responses is both essential and of utmost importance. This study aimed to the cytotoxicity of the type of cell death through apoptosis and autophagy, and odontoblast cell-like differentiation effects of MTA, zinc oxide-eugenol, and two experimental Portland cements modified with bismuth (Portland Bi) and barium (Portland Ba) on primary cell cultures. Material and methods: The cells corresponded to human periodontal ligament and gingival fibroblasts (HPLF, HGF), human pulp cells (HPC), and human squamous carcinoma cells from three different patients (HSC-2, -3, -4). The cements were inoculcated in different concentrations for cytotoxicity evaluation, DNA fragmentation in electrophoresis, apoptosis caspase activation, and autophagy antigen reaction, odontoblast-like cells were differentiated and tested for mineral deposition. The data were subject to a non-parametric test. Results: All cements caused a dose-dependent reduction in cell viability. Contact with zinc oxide-eugenol induced neither DNA fragmentation nor apoptotic caspase-3 activation and autophagy inhibitors (3-methyladenine, bafilomycin). Portland Bi accelerated significantly (p < 0.05) the differentiation of odontoblast-like cells. Within the limitation of this study, it was concluded that Portland cement with bismuth exhibits cytocompatibility and promotes odontoblast-like cell differentiation. This research contributes valuable insights into biocompatibility, suggesting its potential use in endodontic repair and biomimetic remineralization.

9.
In Vivo ; 37(6): 2464-2472, 2023.
Article in English | MEDLINE | ID: mdl-37905640

ABSTRACT

BACKGROUND/AIM: The COVID-19 pandemic led to the rapid spread of the use of ultraviolet C (UVC) sterilizers in many public facilities. Considering the harmful effects of prolonged exposure to UVC, manufacturing of safe skin care products is an important countermeasure. In continuation of our recent study of water-soluble herbal extracts, the present study aimed at searching for anti-UVC components from fat-soluble herbal extracts. MATERIALS AND METHODS: Human dermal fibroblast and melanoma cells were exposed to UVC (1.193 W/m2) for 3 min. Viable cell number was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell-cycle analysis was performed using a cell sorter. UVC-protective activity was quantified by the selective index (SI), i.e., the ratio of the 50% cytotoxic concentration for unirradiated cells to the concentration that restored viability of UVC-treated cells by 50%. RESULTS: Only lemongrass extract, among 12 fat-soluble herbal extracts, showed significant anti-UVC activity, comparable to that of lignified materials and tannins, but exceeding that of N-acetyl-L-cysteine and resveratrol. Lemongrass extract was highly cytotoxic, producing a subG1 cell population. During prolonged incubation in culture medium, the anti-UVC activity of lemongrass extract, sodium ascorbate and vanillic acid declined with an approximate half-life of <0.7, 5.4-21.6, and 27.8-87.0 h, respectively. CONCLUSION: Removal of cytotoxic principle(s) from lemongrass extract is crucial to producing long-lasting UVC-protective effects.


Subject(s)
Cymbopogon , Plant Extracts , Humans , Plant Extracts/pharmacology , Pandemics , Skin , Ultraviolet Rays/adverse effects
10.
Medicines (Basel) ; 10(7)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37505064

ABSTRACT

Background. Many anti-cancer drugs used in clinical practice cause adverse events such as oral mucositis, neurotoxicity, and extravascular leakage. We have reported that two 3-styrylchromone derivatives, 7-methoxy-3-[(1E)-2-phenylethenyl]-4H-1-benzopyran-4-one (Compound A) and 3-[(1E)-2-(4-hydroxyphenyl)ethenyl]-7-methoxy-4H-1-benzopyran-4-one (Compound B), showed the highest tumor-specificity against human oral squamous cell carcinoma (OSCC) cell lines among 291 related compounds. After confirming their superiority by comparing their tumor specificity with newly synthesized 65 derivatives, we investigated the neurotoxicity of these compounds in comparison with four popular anti-cancer drugs. Methods: Tumor-specificity (TSM, TSE, TSN) was evaluated as the ratio of mean CC50 for human normal oral mesenchymal (gingival fibroblast, pulp cell), oral epithelial cells (gingival epithelial progenitor), and neuronal cells (PC-12, SH-SY5Y, LY-PPB6, differentiated PC-12) to OSCC cells (Ca9-22, HSC-2), respectively. Results: Compounds A and B showed one order of magnitude higher TSM than newly synthesized derivatives, confirming its prominent tumor-specificity. Docetaxel showed one order of magnitude higher TSM, but two orders of magnitude lower TSE than Compounds A and B. Compounds A and B showed higher TSM, TSE, and TSN values than doxorubicin, 5-FU, and cisplatin, damaging OSCC cells at concentrations that do not affect the viability of normal epithelial and neuronal cells. QSAR prediction based on the Tox21 database suggested that Compounds A and B may inhibit the signaling pathway of estrogen-related receptors.

11.
Anticancer Res ; 43(8): 3429-3439, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37500171

ABSTRACT

BACKGROUND/AIM: Hyperthermia (HT), combined with chemotherapy, has been used to treat various types of cancer. This study aimed to investigate the HT-sensitivity of malignant and non-malignant cells, and then evaluate the combination effect of docetaxel (DTX) and a newly synthesized chromone derivative (compound A) with HT. MATERIALS AND METHODS: The number of viable cells was determined using the MTT method. Cell cycle distribution was analyzed using a cell sorter, and DNA fragmentation pattern was detected using agarose gel electrophoresis. RESULTS: Among 12 cultured cells, oral squamous cell carcinoma (OSCC), especially Ca9-22 cells, and myelogenous leukemia cells showed higher sensitivity to HT than lung carcinoma and glioblastoma cell lines, while normal oral cells were the most resistant. Cytotoxicity of DTX on Ca9-22 cells was maximum at 41-42°C and 45~60 min exposure to HT. DXT, compound A, and HT induced G2/M arrest of Ca-22 cells. Mild HT enhanced the DTX- and compound A-induced subG1 arrest, in a synergistic fashion. CONCLUSION: The combination G2/M blockers and mild-HT can potentially be used for the treatment of OSCC.


Subject(s)
Carcinoma, Squamous Cell , Hyperthermia, Induced , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Apoptosis , Mouth Neoplasms/drug therapy , Docetaxel/pharmacology , Docetaxel/therapeutic use
12.
In Vivo ; 37(4): 1880-1885, 2023.
Article in English | MEDLINE | ID: mdl-37369479

ABSTRACT

BACKGROUND/AIM: Oral adverse events caused by anticancer drugs are diverse, but few reports have examined pigmentation of the oral mucosa. The aim of this study was to clarify the prevalence of oral mucosal pigmentation caused by anticancer drugs. PATIENTS AND METHODS: This single-centre retrospective study investigated patients who underwent oral examination in our hospital during cancer chemotherapy for 3 years from April 1, 2019 to March 31, 2021. Inclusion criteria were patients who could be followed-up for ≥3 months after completing chemotherapy with drugs that caused pigmentation. The primary predictive variable was the cancer chemotherapeutic agent used. The primary outcome variable was pigmentation of the oral mucosa. Collected data were statistically analysed using the χ2 test or Fisher's exact test, with the level of significance set at p<0.05. RESULTS: A total of 388 patients were enrolled in the study. Eleven patients (2.8%) showed oral mucosal pigmentation. Drugs causing pigmentation [deposition rate (number of patients with deposits/users)] were TS-1 (combination of tegafur, gimeracil, and oteracil potassium) [12.2% (5/41)], paclitaxel [4.0% (2/50)], gemcitabine [5.0% (1/20)], cyclophosphamide [2.3% (1/42)], carboplatin [1.6% (1/64)], fluorouracil [2.3% (1/43)], and capecitabine [3.4% (1/29)]. CONCLUSION: Oral pigmentation due to cancer chemotherapy was found in 2.8% of patients. TS-1, carboplatin, cyclophosphamide, capecitabine, fluorouracil, gemcitabine, and paclitaxel caused pigmentation of the oral mucosa. Among these, TS-1 was the most likely to cause pigmentation, affecting 12.2% of users.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Capecitabine , Carboplatin , Mouth Mucosa , Retrospective Studies , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Agents/adverse effects , Fluorouracil/adverse effects , Paclitaxel/adverse effects , Gemcitabine , Pigmentation , Neoplasms/drug therapy , Neoplasms/chemically induced , Cyclophosphamide
13.
In Vivo ; 37(4): 1540-1551, 2023.
Article in English | MEDLINE | ID: mdl-37369486

ABSTRACT

BACKGROUND/AIM: COVID-19 pandemic caused the rapid dissemination of ultraviolet C (UVC) sterilization apparatuses. Prolonged exposure to UVC, however, may exert harmful effects on the human body. The aim of the present study was to comprehensively investigate the anti-UVC activity of a total of 108 hot-water soluble herb extracts, using human dermal fibroblast and melanoma cell lines, for the future development of skin care products. MATERIALS AND METHODS: Exposure time to UVC was set to 3 min, and cell viability was determined using the MTT assay. Anti-UVC activity was determined using the selective index (SI), a ratio of 50% cytotoxic concentration for unirradiated cells to 50% effective concentration that restored half of the UVC-induced decrease of viability. RESULTS: Dermal fibroblasts at any population doubling level were more resistant to UVC irradiation than melanoma cells. Both 49 herb extracts recommended by Japan Medical Herb Association (JAMHA) and 59 additional herb extracts showed comparable anti-UVC activity. SI values of selected herbs (Butterbur, Cloves, Curry Tree, Evening Primrose, Rooibos, Stevia, Willow) were several-fold lower than those of vitamin C and vanillin. Their potent anti-UVC activity was maintained for at least 6 h post irradiation, but declined thereafter to the basal level, possibly due to cytotoxic ingredients. CONCLUSION: UVC sensitivity may be related to the growth potential of target cells. Removal of cytotoxic ingredients of herb extracts may further potentiate and prolong their anti-UVC activity.


Subject(s)
COVID-19 , Melanoma , Humans , Pandemics , Cell Line , Skin , Ultraviolet Rays/adverse effects , Melanoma/drug therapy , Plant Extracts/pharmacology
14.
In Vivo ; 37(2): 830-835, 2023.
Article in English | MEDLINE | ID: mdl-36881064

ABSTRACT

BACKGROUND/AIM: Radiation-induced stomatitis is one of the main acute disorders in patients with head and neck cancer. Since its treatment is often delayed or discontinued, the control of perioperative oral function is necessary. It has been reported that Hangeshashinto (Japanese traditional herbal medicine) and cryotherapy (known as frozen therapy) alleviate oral stomatitis and the accompanying pain. In the present study, the combination effect of Hangeshashinto and cryotherapy on radiation-induced stomatitis in patients with head and neck cancers was investigated for the first time. PATIENTS AND METHODS: Fifty patients with head and neck cancer were subjected to radiation therapy with concomitant administration of anticancer drugs. They were separated into two groups, matched according to age, stage of cancer progression, total radiation dose, and type of concomitant anticancer drugs. One group was orally administrated frozen Hangeshashinto, while another group was not. Oral mucosal damage was assessed by the grade classification CTCAE v4.0 of the National Cancer Institute of the United States (Japanese JCOG version). Duration time of radiation-induced stomatitis was determined by the appearance of grade 1 redness to its disappearance. RESULTS: Frozen Hangeshashinto significantly alleviated, delayed the onset, and reduced the duration time of the radiation-induced stomatitis. CONCLUSION: Cryotherapy in combination with Hangeshashinto can be used for the treatment of radiation-induced oral stomatitis.


Subject(s)
Cryotherapy , Stomatitis , Humans , Cryotherapy/adverse effects , Stomatitis/etiology , Stomatitis/therapy , Mouth Mucosa , Pain
15.
Molecules ; 27(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36235258

ABSTRACT

Two series of novel unsymmetrical 3,5-bis(benzylidene)-4 piperidones 2a-f and 3a-e were designed as candidate antineoplastic agents. These compounds display potent cytotoxicity towards two colon cancers, as well as several oral squamous cell carcinomas. These compounds are less toxic to various non-malignant cells giving rise to large selectivity index (SI) figures. Many of the compounds are also cytotoxic towards CEM lymphoma and HL-60 leukemia cells. Representative compounds induced apoptotic cell death characterized by caspase-3 activation and subG1 accumulation in some OSCC cells, as well as the depolarization of the mitochondrial membrane potential in CEM cells. A further line of inquiry was directed to finding if the SI values are correlated with the atomic charges on the olefinic carbon atoms. The potential of these compounds as antineoplastic agents was enhanced by an ADME (absorption, distribution, metabolism, and excretion) evaluation of five lead molecules, which revealed no violations.


Subject(s)
Antineoplastic Agents , Piperidones , Antineoplastic Agents/pharmacology , Apoptosis , Carbon/pharmacology , Caspase 3/pharmacology , Cell Line, Tumor , Humans , Piperidones/pharmacology
16.
In Vivo ; 36(6): 2689-2699, 2022.
Article in English | MEDLINE | ID: mdl-36309360

ABSTRACT

BACKGROUND/AIM: The rapid spread of COVID-19 resulted in the revision of the value of ultraviolet C (UVC) sterilization in working spaces. This study aimed at re-evaluating the anti-UVC activity of four groups of natural products against human melanoma COLO679 and human normal dermal fibroblast (HDFa) cells, based on chemotherapeutic index. MATERIALS AND METHODS: Various cell lines were exposed to UVC for 3 min in the presence of increasing concentrations of test compounds and viable cell numbers were determined with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The anti-UVC activity was quantified by the ratio of the 50% cytotoxic concentration (determined without irradiation) to the 50% effective concentration (which abolished by 50% the UVC-induced loss of viability). Apoptosis was quantified as the subG1 population proportion following cell-cycle analysis. RESULTS: Among four groups of major natural products, six phenylpropanoids showed the highest anti-UVC activity, followed by the lignified products and alkaline products that contain lignin and its degradation products. On the other hand, tannins and flavonoids showed lower activity due to their higher cytotoxicity. UVC-sensitive COLO679 cells lack dectin-1 protein expression. CONCLUSION: These data suggest the prominent anti-UVC activity of lignin degradation products, and the possible involvement of dectin-1 expression in UVC-sensitivity.


Subject(s)
Biological Products , COVID-19 , Melanoma , Humans , Lignin/pharmacology , Ultraviolet Rays , Biological Products/pharmacology
17.
In Vivo ; 36(6): 2678-2688, 2022.
Article in English | MEDLINE | ID: mdl-36309405

ABSTRACT

BACKGROUND/AIM: Underwater exercise is aimed at preventing aging, maintaining, and improving motor function, and improving physical function. However, its rehabilitation effects have not been well evaluated. In order to gain insight into the molecular basis of its rehabilitation effects, possible changes in the salivary metabolites of four older persons with disability (mean age: 72.5 years) during underwater exercise were investigated. MATERIALS AND METHODS: Halitosis was measured by Breathtron; salivary bacterial number by bacterial counter; amino acids by amino acid analyzer; 8-oxoguanine by ELISA; and intracellular metabolites by capillary electrophoresis, time-of-flight mass spectrometry, liquid chromatography, and triode quadrupole mass spectrometry. RESULTS: Underwater exercise induced apparent declines in two major salivary amino acids (glycine and proline) and bacterial numbers in the cheek mucosa and salivary, without apparent changes in the halitosis and urine 8-oxoguanine concentration. Older subjects showed higher concentrations of most of 166 metabolites compared to young volunteers (mean age: 38.8 years old). Fifteen compounds were significantly reduced with the progression of underwater exercise. CONCLUSION: Improvement of upright balance function with underwater exercise is correlated with several salivary components.


Subject(s)
Disabled Persons , Halitosis , Humans , Aged , Aged, 80 and over , Adult , Halitosis/metabolism , Saliva/chemistry , Exercise , Amino Acids/metabolism
18.
In Vivo ; 36(5): 2116-2125, 2022.
Article in English | MEDLINE | ID: mdl-36099100

ABSTRACT

BACKGROUND/AIM: Rapid spread of COVID-19 resulted in the revision of the value of ultraviolet C (UVC) sterilization in working spaces. This study aimed at investigating the UVC sensitivity of eighteen malignant and nonmalignant cell lines, the protective activity of sodium ascorbate against UVC, and whether Dectin-2 is involved in UVC sensitivity. MATERIALS AND METHODS: Various cell lines were exposed to UVC for 3 min, and cell viability was determined using the MTT assay. Anti-UV activity was determined as the ratio of 50% cytotoxic concentration (determined with unirradiated cells) to 50% effective concentration (that restored half of the UV-induced loss of viability). Dectin-2 expression was quantified using flow cytometry. RESULTS: The use of culture medium rather than phosphate-buffered saline is recommended as irradiation solution, since several cells are easily detached during irradiation in phosphate-buffered saline. Oral squamous cell carcinoma cell lines showed the highest UV sensitivity, followed by neuroblastoma, glioblastoma, leukemia, melanoma, lung carcinoma cells, and normal oral and dermal fibroblasts. Human dermal fibroblasts were more resistant than melanoma cell lines; however, both expressed Dectin-2. Sodium ascorbate at micromolar concentrations eliminated the cytotoxicity of UVC in these cell lines. CONCLUSION: Normal cells are generally UVC-resistant compared to corresponding malignant cells, which have higher growth potential. Dectin-2 protein expression itself may not be determinant of UVC sensitivity.


Subject(s)
COVID-19 , Carcinoma, Squamous Cell , Melanoma , Mouth Neoplasms , Ascorbic Acid/pharmacology , Humans , Lectins, C-Type , Phosphates , Ultraviolet Rays
19.
Bioorg Chem ; 127: 105969, 2022 10.
Article in English | MEDLINE | ID: mdl-35926240

ABSTRACT

Pyrazole-based carbohydrazone hybrids have been considered to be a remarkable class of compounds in pharmaceutical chemistry. Here, we reported bioactivities of 4-(3-(2-(arylidene)hydrazin-1-carbonyl)-5-phenyl-1H-pyrazol-1-yl)benzenesulfonamides (1-27) towards CA isoenzymes (hCA I, hCA II, hCA IX) and human oral squamous cell carcinoma cell line. Compounds 19 (Ki = 10.1 nM, hCA I/hCA IX = 749.6), 22 (Ki = 18.5 nM, hCA I/hCA IX = 429.2), 26 (Ki = 14.5 nM, hCA I/hCA IX = 596.9), 27 (Ki = 21.5 nM, hCA I/hCA IX = 413.1) were more potent and selective inhibitors of cancer-associated hCA IX isoenzyme. Compounds 22 and 26 were also found to be approximately three times more selective hCA IX inhibitors over off-target hCA II at low nanomolar. Compounds 19, 22, 23, 24, and 26 with IC50 of 1.6-1.7 µM showed potent cytotoxicity against human oral squamous cell carcinoma cell line as compared with human gingival fibroblast, producing the tumor-specificity value over 100. This was due to its cytostatic growth inhibition accompanied by a slight but significant dose-dependent increase in cell shrinkage and subG1 cell accumulation and marginal activation of caspase 3 substrates. Bioassay results showed that carbohydrazone-based hybrids could be useful candidates to design novel anticancer compounds and selective carbonic anhydrase inhibitors.


Subject(s)
Carbonic Anhydrases , Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Antigens, Neoplasm/metabolism , Carbonic Anhydrase IX , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Humans , Hydrazones/pharmacology , Isoenzymes/metabolism , Molecular Structure , Pyrazoles/chemistry , Pyrazoles/pharmacology , Squamous Cell Carcinoma of Head and Neck , Structure-Activity Relationship , Sulfonamides , Zinc , Benzenesulfonamides
20.
Medicines (Basel) ; 9(6)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35736248

ABSTRACT

A series of 3,5-bis(benzylidene)-1-dichloroacetyl-4-piperidones 1a-l was evaluated against Ca9-22, HSC-2, HSC-3, and HSC-4 squamous cell carcinomas. Virtually all of the compounds displayed potent cytotoxicity, with 83% of the CC50 values being submicromolar and several CC50 values being in the double digit nanomolar range. The compounds were appreciably less toxic to human HGF, HPLF, and HPC non-malignant cells, which led to some noteworthy selectivity index (SI) figures. From these studies, 1d,g,k emerged as the lead molecules in terms of their potencies and SI values. A Quantitative Structure-Activity Relationship (QSAR) study revealed that cytotoxic potencies and potency-selectivity expression figures increased when the magnitude of the sigma values in the aryl rings was elevated. The modes of action of the representative cytotoxins in Ca9-22 cells were found to include G2/M arrest and stimulation of the cells to undergo mitosis and cause poly(ADP-ribose) polymerase (PARP) and procaspase 3 cleavage.

SELECTION OF CITATIONS
SEARCH DETAIL
...