Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(8): e0288075, 2023.
Article in English | MEDLINE | ID: mdl-37531349

ABSTRACT

In 2018, a well-constructed cist-type grave was discovered at Ba`ja, a Neolithic village (7,400-6,800 BCE) in Southern Jordan. Underneath multiple grave layers, an 8-year-old child was buried in a fetal position. Over 2,500 beads were found on the chest and neck, along with a double perforated stone pendant and a delicately engraved mother-of-pearl ring discovered among the concentration of beads. The first was found behind the neck, and the second on the chest. The meticulous documentation of the bead distribution indicated that the assemblage was a composite ornament that had gradually collapsed, partly due to the burying position. Our aim was to challenge time degradation and to reimagine the initial composition in order to best explore the significance of this symbolic category of material culture, not as mere group of beads, but as an ornamental creation with further aesthetic, artisanal and socioeconomic implications. The reconstruction results exceeded our expectations as it revealed an imposing multi-row necklace of complex structure and attractive design. Through multiple lines of evidence, we suggest that the necklace was created at Ba`ja, although significant parts of beads were made from exotic shells and stones, including fossil amber, an unprecedented material never attested before for this period. The retrieval of such an ornament from life and its attribution to a young dead child highlights the significant social status of this individual. Beyond the symbolic functions related to identity, the necklace is believed to have played a key role in performing the inhumation rituals, understood as a public event gathering families, relatives, and people from other villages. In this sense, the necklace is not seen as belonging completely to the realm of death but rather to the world of the living, materializing a collective memory and shared moments of emotions and social cohesion.


Subject(s)
Compulsive Behavior , Social Status , Humans , Child , Pregnancy , Female , Jordan , Social Perception , Fossils
2.
Nat Commun ; 14(1): 914, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36854679

ABSTRACT

The systematics of Madagascar's extinct elephant birds remains controversial due to large gaps in the fossil record and poor biomolecular preservation of skeletal specimens. Here, a molecular analysis of 1000-year-old fossil eggshells provides the first description of elephant bird phylogeography and offers insight into the ecology and evolution of these flightless giants. Mitochondrial genomes from across Madagascar reveal genetic variation that is correlated with eggshell morphology, stable isotope composition, and geographic distribution. The elephant bird crown is dated to ca. 30 Mya, when Madagascar is estimated to have become less arid as it moved northward. High levels of between-clade genetic variation support reclassifying Mullerornis into a separate family. Low levels of within-clade genetic variation suggest there were only two elephant bird genera existing in southern Madagascar during the Holocene. However, we find an eggshell collection from Madagascar's far north that represents a unique lineage of Aepyornis. Furthermore, divergence within Aepyornis coincides with the aridification of Madagascar during the early Pleistocene ca. 1.5 Ma, and is consistent with the fragmentation of populations in the highlands driving diversification and the evolution of extreme gigantism over shorts timescales. We advocate for a revision of their taxonomy that integrates palaeogenomic and palaeoecological perspectives.


Subject(s)
Birds , Egg Shell , Fossils , Animals , Birds/classification , Extinction, Biological
3.
Biochim Biophys Acta Proteins Proteom ; 1869(12): 140718, 2021 12.
Article in English | MEDLINE | ID: mdl-34506968

ABSTRACT

Mollusc shells represent excellent systems for the preservation and retrieval of genuine biomolecules from archaeological or palaeontological samples. As a consequence, the post-mortem breakdown of intracrystalline mollusc shell proteins has been extensively investigated, particularly with regard to its potential use as a "molecular clock" for geochronological applications. But despite seventy years of ancient protein research, the fundamental aspects of diagenesis-induced changes to protein structures and sequences remain elusive. In this study we investigate the degradation of intracrystalline proteins by performing artificial degradation experiments on the shell of the thorny oyster, Spondylus gaederopus, which is particularly important for archaeological research. We used immunochemistry and tandem mass tag (TMT) quantitative proteomics to simultaneously track patterns of structural loss and of peptide bond hydrolysis. Powdered and bleached shell samples were heated in water at four different temperatures (80, 95, 110, 140 °C) for different time durations. The structural loss of carbohydrate and protein groups was investigated by immunochemical techniques (ELLA and ELISA) and peptide bond hydrolysis was studied by tracking the changes in protein/peptide relative abundances over time using TMT quantitative proteomics. We find that heating does not induce instant organic matrix decay, but first facilitates the uncoiling of cross-linked structures, thus improving matrix detection. We calculated apparent activation energies of structural loss: Ea (carbohydrate groups) = 104.7 kJ/mol, Ea (protein epitopes) = 104.4 kJ/mol, which suggests that secondary matrix structure degradation may proceed simultaneously with protein hydrolysis. While prolonged heating at 110 °C (10 days) results in complete loss of the structural signal, surviving peptide sequences were still observed. Eight hydrolysis-prone peptide bonds were identified in the top scoring shell sequence, the uncharacterised protein LOC117318053 from Pecten maximus. Interestingly, these were not the expected "weak" bonds based on published theoretical stabilities calculated for peptides in solution. This further confirms that intracrystalline protein degradation patterns are complex and that the overall microchemical environment plays an active role in protein stability. Our TMT approach represents a major stepping stone towards developing a model for studying protein diagenesis in biomineralised systems.


Subject(s)
Animal Shells/chemistry , Bivalvia/chemistry , Proteome/chemistry , Animals , Proteolysis
4.
J Proteomics ; 227: 103920, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32712371

ABSTRACT

Molluscs were one of the most widely-used natural resources in the past, and their shells are abundant among archaeological findings. However, our knowledge of the variety of shells that were circulating in prehistoric times (and thus their socio-economic and cultural value) is scarce due to the difficulty of achieving taxonomic determination of fragmented and/or worked remains. This study aims to obtain molecular barcodes based on peptide mass fingerprints (PMFs) of intracrystalline proteins, in order to obtain shell identification. Palaeoproteomic applications on shells are challenging, due to low concentration of molluscan proteins and an incomplete understanding of their sequences. We explore different approaches for protein extraction from small-size samples (<20 mg), followed by MALDI-TOF-MS analysis. The SP3 (single-pot, solid-phase) sample preparation method was found to be the most successful in retrieving the intracrystalline protein fraction from seven molluscan shell taxa, which belong to different phylogenetic groups, possess distinct microstructures and are relevant for archaeology. Furthermore, all the shells analysed, including a 7000-year-old specimen of the freshwater bivalve Pseudunio, yielded good-quality distinctive spectra, demonstrating that PMFs can be used for shell taxon determination. Our work suggests good potential for large-scale screening of archaeological molluscan remains. SIGNIFICANCE: We characterise for the first time the peptide mass fingerprints of the intracrystalline shell protein fraction isolated from different molluscan taxa. We demonstrate that these proteins yield distinctive PMFs, even for shells that are phylogenetically related and/or that display similar microstructures. Furthermore, we extend the range of sample preparation approaches for "shellomics" by testing the SP3 method, which proved to be well-suited to shell protein extraction from small-size and protein-poor samples. This work thus lays the foundations for future large-scale applications for the identification of mollusc shells and other invertebrate remains from the archaeological and palaeontological records.


Subject(s)
Archaeology , Bivalvia , Animal Shells , Animals , Peptide Mapping , Peptides , Phylogeny
5.
J Struct Biol ; 211(1): 107497, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32220629

ABSTRACT

Molluscs, the largest marine phylum, display extraordinary shell diversity and sophisticated biomineral architectures. However, mineral-associated biomolecules involved in biomineralization are still poorly characterised. We report the first comprehensive structural and biomolecular study of Spondylus gaederopus, a pectinoid bivalve with a peculiar shell texture. Used since prehistoric times, this is the best-known shell of Europe's cultural heritage. We find that Spondylus microstructure is very poor in mineral-bound organics, which are mostly intercrystalline and concentrated at the interface between structural layers. Using high-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS) we characterized several shell protein fractions, isolated following different bleaching treatments. Several peptides were identified as well as six shell proteins, which display features and domains typically found in biomineralized tissues, including the prevalence of intrinsically disordered regions. It is very likely that these sequences only partially represent the full proteome of Spondylus, considering the lack of genomics data for this genus and the fact that most of the reconstructed peptides do not match with any known shell proteins, representing consequently lineage-specific sequences. This work sheds light onto the shell matrix involved in the biomineralization in spondylids. Our proteomics data suggest that Spondylus has evolved a shell-forming toolkit, distinct from that of other better studied pectinoids - fine-tuned to produce shell structures with high mechanical properties, while limited in organic content. This study therefore represents an important milestone for future studies on biomineralized skeletons and provides the first reference dataset for forthcoming molecular studies of Spondylus archaeological artifacts.


Subject(s)
Animal Shells/ultrastructure , Calcification, Physiologic/genetics , Ostreidae/ultrastructure , Proteome/genetics , Animal Shells/metabolism , Animals , Minerals/metabolism , Ostreidae/genetics , Ostreidae/physiology
6.
Elife ; 82019 05 07.
Article in English | MEDLINE | ID: mdl-31060688

ABSTRACT

The extensive use of mollusc shell as a versatile raw material is testament to its importance in prehistoric times. The consistent choice of certain species for different purposes, including the making of ornaments, is a direct representation of how humans viewed and exploited their environment. The necessary taxonomic information, however, is often impossible to obtain from objects that are small, heavily worked or degraded. Here we propose a novel biogeochemical approach to track the biological origin of prehistoric mollusc shell. We conducted an in-depth study of archaeological ornaments using microstructural, geochemical and biomolecular analyses, including 'palaeoshellomics', the first application of palaeoproteomics to mollusc shells (and indeed to any invertebrate calcified tissue). We reveal the consistent use of locally-sourced freshwater mother-of-pearl for the standardized manufacture of 'double-buttons'. This craft is found throughout Europe between 4200-3800 BCE, highlighting the ornament-makers' profound knowledge of the biogeosphere and the existence of cross-cultural traditions.


Subject(s)
Fresh Water , Human Activities , Nacre/chemistry , Paleontology/methods , Europe , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...