Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Med Int Health ; 29(5): 365-376, 2024 May.
Article in English | MEDLINE | ID: mdl-38480005

ABSTRACT

BACKGROUND: In northern Tanzania, Q fever, spotted fever group (SFG) rickettsioses, and typhus group (TG) rickettsioses are common causes of febrile illness. We sought to describe the prevalence and risk factors for these zoonoses in a pastoralist community. METHODS: Febrile patients ≥2 years old presenting to Endulen Hospital in the Ngorongoro Conservation Area were enrolled from August 2016 through October 2017. Acute and convalescent blood samples were collected, and a questionnaire was administered. Sera were tested by immunofluorescent antibody (IFA) IgG assays using Coxiella burnetii (Phase II), Rickettsia africae, and Rickettsia typhi antigens. Serologic evidence of exposure was defined by an IFA titre ≥1:64; probable cases by an acute IFA titre ≥1:128; and confirmed cases by a ≥4-fold rise in titre between samples. Risk factors for exposure and acute case status were evaluated. RESULTS: Of 228 participants, 99 (43.4%) were male and the median (interquartile range) age was 27 (16-41) years. Among these, 117 (51.3%) had C. burnetii exposure, 74 (32.5%) had probable Q fever, 176 (77.2%) had SFG Rickettsia exposure, 134 (58.8%) had probable SFG rickettsioses, 11 (4.8%) had TG Rickettsia exposure, and 4 (1.8%) had probable TG rickettsioses. Of 146 participants with paired sera, 1 (0.5%) had confirmed Q fever, 8 (5.5%) had confirmed SFG rickettsioses, and none had confirmed TG rickettsioses. Livestock slaughter was associated with acute Q fever (adjusted odds ratio [OR] 2.54, 95% confidence interval [CI] 1.38-4.76) and sheep slaughter with SFG rickettsioses case (OR 4.63, 95% CI 1.08-23.50). DISCUSSION: Acute Q fever and SFG rickettsioses were detected in participants with febrile illness. Exposures to C. burnetii and to SFG Rickettsia were highly prevalent, and interactions with livestock were associated with increased odds of illness with both pathogens. Further characterisation of the burden and risks for these diseases is warranted.


Subject(s)
Q Fever , Rickettsia Infections , Spotted Fever Group Rickettsiosis , Humans , Tanzania/epidemiology , Q Fever/epidemiology , Male , Risk Factors , Female , Adult , Adolescent , Prevalence , Spotted Fever Group Rickettsiosis/epidemiology , Spotted Fever Group Rickettsiosis/microbiology , Young Adult , Middle Aged , Child , Rickettsia Infections/epidemiology , Rickettsia Infections/microbiology , Animals , Rickettsia/immunology , Rickettsia/isolation & purification , Child, Preschool , Coxiella burnetii/immunology , Aged , Zoonoses/microbiology
2.
Microbiol Resour Announc ; 13(2): e0093023, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38289053

ABSTRACT

Brucella abortus causes infections in humans and livestock. Bacterial isolates are challenging to obtain, and very little is known about the genomic epidemiology of this species in Africa. Here, we report the complete genome sequence of a Brucella abortus isolate cultured from a febrile human in northern Tanzania.

3.
PLoS Negl Trop Dis ; 17(12): e0011855, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38117858

ABSTRACT

BACKGROUND: Leptospirosis is suspected to be a major cause of illness in rural Tanzania associated with close contact with livestock. We sought to determine leptospirosis prevalence, identify infecting Leptospira serogroups, and investigate risk factors for leptospirosis in a rural area of Tanzania where pastoralist animal husbandry practices and sustained livestock contact are common. METHODS: We enrolled participants at Endulen Hospital, Tanzania. Patients with a history of fever within 72 hours, or a tympanic temperature of ≥38.0°C were eligible. Serum samples were collected at presentation and 4-6 weeks later. Sera were tested using microscopic agglutination testing with 20 Leptospira serovars from 17 serogroups. Acute leptospirosis cases were defined by a ≥four-fold rise in antibody titre between acute and convalescent serum samples or a reciprocal titre ≥400 in either sample. Leptospira seropositivity was defined by a single reciprocal antibody titre ≥100 in either sample. We defined the predominant reactive serogroup as that with the highest titre. We explored risk factors for acute leptospirosis and Leptospira seropositivity using logistic regression modelling. RESULTS: Of 229 participants, 99 (43.2%) were male and the median (range) age was 27 (0, 78) years. Participation in at least one animal husbandry practice was reported by 160 (69.9%). We identified 18 (7.9%) cases of acute leptospirosis, with Djasiman 8 (44.4%) and Australis 7 (38.9%) the most common predominant reactive serogroups. Overall, 69 (30.1%) participants were Leptospira seropositive and the most common predominant reactive serogroups were Icterohaemorrhagiae (n = 20, 29.0%), Djasiman (n = 19, 27.5%), and Australis (n = 17, 24.6%). Milking cattle (OR 6.27, 95% CI 2.24-7.52) was a risk factor for acute leptospirosis, and milking goats (OR 2.35, 95% CI 1.07-5.16) was a risk factor for Leptospira seropositivity. CONCLUSIONS: We identified leptospirosis in approximately one in twelve patients attending hospital with fever from this rural community. Interventions that reduce risks associated with milking livestock may reduce human infections.


Subject(s)
Leptospira , Leptospirosis , Humans , Male , Animals , Cattle , Female , Tanzania/epidemiology , Prevalence , Leptospirosis/veterinary , Goats , Risk Factors , Serogroup , Fever , Livestock , Seroepidemiologic Studies , Antibodies, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL