Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Neuroradiology ; 66(6): 973-981, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653782

ABSTRACT

PURPOSE: The rarity of IDH2 mutations in supratentorial gliomas has led to gaps in understanding their radiological characteristics, potentially resulting in misdiagnosis based solely on negative IDH1 immunohistochemical staining. We aimed to investigate the clinical and imaging characteristics of IDH2-mutant gliomas. METHODS: We analyzed imaging data from adult patients with pathologically confirmed diffuse lower-grade gliomas and known IDH1/2 alteration and 1p/19q codeletion statuses obtained from the records of our institute (January 2011 to August 2022, Cohort 1) and The Cancer Imaging Archive (TCIA, Cohort 2). Two radiologists evaluated clinical information and radiological findings using standardized methods. Furthermore, we compared the data for IDH2-mutant and IDH-wildtype gliomas. Multivariate logistic regression was used to identify the predictors of IDH2 mutation status, and receiver operating characteristic curve analysis was employed to assess the predictive performance of the model. RESULTS: Of the 20 IDH2-mutant supratentorial gliomas, 95% were in the frontal lobes, with 75% classified as oligodendrogliomas. Age and the T2-FLAIR discordance were independent predictors of IDH2 mutations. Receiver operating characteristic curve analysis for the model using age and T2-FLAIR discordance demonstrated a strong potential for discriminating between IDH2-mutant and IDH-wildtype gliomas, with an area under the curve of 0.96 (95% CI, 0.91-0.98, P = .02). CONCLUSION: A high frequency of oligodendrogliomas with 1p/19q codeletion was observed in IDH2-mutated gliomas. Younger age and the presence of the T2-FLAIR discordance were associated with IDH2 mutations and these findings may help with precise diagnoses and treatment decisions in clinical practice.


Subject(s)
Glioma , Isocitrate Dehydrogenase , Magnetic Resonance Imaging , Mutation , Supratentorial Neoplasms , Humans , Isocitrate Dehydrogenase/genetics , Male , Female , Glioma/genetics , Glioma/diagnostic imaging , Glioma/pathology , Middle Aged , Adult , Supratentorial Neoplasms/genetics , Supratentorial Neoplasms/diagnostic imaging , Supratentorial Neoplasms/pathology , Magnetic Resonance Imaging/methods , Aged , Retrospective Studies
3.
Eur Radiol Exp ; 8(1): 28, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38448783

ABSTRACT

BACKGROUND: To evaluate the clinical usefulness of thin-slice echo-planar imaging (EPI)-based diffusion-weighted imaging (DWI) with an on-console distortion correction technique, termed reverse encoding distortion correction DWI (RDC-DWI), in patients with non-functioning pituitary neuroendocrine tumor (PitNET)/pituitary adenoma. METHODS: Patients with non-functioning PitNET/pituitary adenoma who underwent 3-T RDC-DWI between December 2021 and September 2022 were retrospectively enrolled. Image quality was compared among RDC-DWI, DWI with correction for distortion induced by B0 inhomogeneity alone (B0-corrected-DWI), and original EPI-based DWI with anterior-posterior phase-encoding direction (AP-DWI). Susceptibility artifact, anatomical visualization of cranial nerves, overall tumor visualization, and visualization of cavernous sinus invasion were assessed qualitatively. Quantitative assessment of geometric distortion was performed by evaluation of anterior and posterior displacement between each DWI and the corresponding three-dimensional T2-weighted imaging. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and apparent diffusion coefficient values were measured. RESULTS: Sixty-four patients (age 70.8 ± 9.9 years [mean ± standard deviation]; 33 females) with non-functioning PitNET/pituitary adenoma were evaluated. In terms of susceptibility artifacts in the frontal and temporal lobes, visualization of left trigeminal nerve, overall tumor visualization, and anterior displacement, RDC-DWI performed the best and B0-corrected-DWI performed better than AP-DWI. The right oculomotor and right trigeminal nerves were better visualized by RDC-DWI than by B0-corrected-DWI and AP-DWI. Visualization of cavernous sinus invasion and posterior displacement were better by RDC-DWI and B0-corrected-DWI than by AP-DWI. SNR and CNR were the highest for RDC-DWI. CONCLUSIONS: RDC-DWI achieved excellent image quality regarding susceptibility artifact, geometric distortion, and tumor visualization in patients with non-functioning PitNET/pituitary adenoma. RELEVANCE STATEMENT: RDC-DWI facilitates excellent visualization of the pituitary region and surrounding normal structures, and its on-console distortion correction technique is convenient. RDC-DWI can clearly depict cavernous sinus invasion of PitNET/pituitary adenoma even without contrast medium. KEY POINTS: • RDC-DWI is an EPI-based DWI technique with a novel on-console distortion correction technique. • RDC-DWI corrects distortion due to B0 field inhomogeneity and eddy current. • We evaluated the usefulness of thin-slice RDC-DWI in non-functioning PitNET/pituitary adenoma. • RDC-DWI exhibited excellent visualization in the pituitary region and surrounding structures. • In addition, the on-console distortion correction of RDC-DWI is clinically convenient.


Subject(s)
Neuroendocrine Tumors , Pituitary Neoplasms , Female , Humans , Middle Aged , Aged , Aged, 80 and over , Pituitary Neoplasms/diagnostic imaging , Retrospective Studies , Diffusion Magnetic Resonance Imaging , Artifacts
4.
Eur Radiol ; 34(4): 2183-2194, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37798407

ABSTRACT

OBJECTIVE: To investigate the relationship of followings for patients with moyamoya disease (MMD): arterial wall enhancement on vessel wall MRI (VW-MRI), cross-sectional area (CSA), time-of-flight MR angiography (MRA), age, locations from intracranial internal carotid artery (ICA) to proximal middle cerebral artery (MCA), disease progression, and transient ischemic attack (TIA). METHODS: Patients who underwent VW-MRI between October 2018 and December 2020 were enrolled in this retrospective study. We measured arterial wall enhancement (enhancement ratio, ER) and CSA at five sections of ICA and MCA. Also, we scored MRA findings. Multiple linear regression (MLR) analysis was performed to explore the associations between ER, age, MRA score, CSA, history of TIA, and surgical revascularization. RESULTS: We investigated 102 sides of 51 patients with MMD (35 women, 16 men, mean age 31 years ± 18 [standard deviation]). ER for MRA score 2 (signal discontinuity) was higher than ER for other scores in sections D (end of ICA) and E (proximal MCA) on MLR analysis. ER in section E was significantly higher in patients for MRA score 2 with TIA history than without. ER significantly increased as CSA increased in section E, which suggests ER becomes less in decreased CSA due to negative remodeling. CONCLUSION: Arterial wall enhancement in MMD varies by age, location, and disease progression. Arterial wall enhancement may be stronger in the progressive stage of MMD. Arterial wall enhancement increases with history of TIA at proximal MCA, which may indicate the progression of the disease. CLINICAL RELEVANCE STATEMENT: Arterial wall enhancement in moyamoya disease varies by age, location of arteries, and disease progression, and arterial wall enhancement may be used as an imaging biomarker of moyamoya disease. KEY POINTS: It has not been clarified what arterial wall enhancement in moyamoya disease represents. Arterial wall enhancement in moyamoya disease varies by age, location of arteries, and disease progression. Arterial wall enhancement in moyamoya disease increases as the disease progresses.


Subject(s)
Ischemic Attack, Transient , Moyamoya Disease , Male , Humans , Female , Adult , Moyamoya Disease/diagnostic imaging , Retrospective Studies , Ischemic Attack, Transient/diagnostic imaging , Magnetic Resonance Imaging/methods , Middle Cerebral Artery , Disease Progression
5.
J Magn Reson Imaging ; 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37681441

ABSTRACT

Quantitative susceptibility mapping (QSM) is a unique technique for providing quantitative information on tissue magnetic susceptibility using phase image data. QSM can provide valuable information regarding physiological and pathological processes such as iron deposition, hemorrhage, calcification, and myelin. QSM has been considered for use as an imaging biomarker to investigate physiological status and pathological changes. Although various studies have investigated the clinical applications of QSM, particularly regarding the use of QSM in clinical practice, have not been examined well. This review provides on an overview of the basics of QSM and its clinical applications in neuroradiology. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

6.
Sci Rep ; 13(1): 16442, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37777590

ABSTRACT

Neurocutaneous melanosis (NCM) is a rare, non-hereditary neurocutaneous disorder characterized by excessive melanocytic proliferation in the skin and central nervous system. As no major studies have covered the incidence of NCM among Japanese patients with congenital melanocytic nevi (CMN), we prospectively investigated the incidence of NCM among Japanese patients who underwent initial treatment for CMN. The relationship of CMN and NCM was also investigated. Japanese pediatric patients with CMN under 1 year of age were included between January 2020 and November 2022, and all patients underwent brain MRI to check for NCM in this study. NCM lesions were most frequently seen in the amygdala, followed by the cerebellum, brainstem, and cerebral hemispheres. NCM was diagnosed on brain MRI in 31.6% of the 38 patients with CMN and in 25.0% of patients with no prior examination or treatment. Distribution and size of CMN, number of satellite nevi, rugosity and nodules were strongly associated with the existence of NCM, and these findings may guide a future registry study with a large cohort of CMN patients.


Subject(s)
Neurocutaneous Syndromes , Nevus, Pigmented , Skin Neoplasms , Child , Humans , East Asian People , Incidence , Magnetic Resonance Imaging , Neurocutaneous Syndromes/diagnostic imaging , Neurocutaneous Syndromes/epidemiology , Nevus, Pigmented/epidemiology , Nevus, Pigmented/diagnosis , Skin Neoplasms/diagnosis
7.
Jpn J Radiol ; 41(11): 1255-1264, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37219717

ABSTRACT

PURPOSE: This study aimed to investigate the uptake characteristics of 18F-fluoromisonidazole (FMISO), in mutant-type isocitrate dehydrogenase (IDH-mutant, grade 3 and 4) and wild-type IDH (IDH-wildtype, grade 4) 2021 WHO classification adult-type diffuse gliomas. MATERIALS AND METHODS: Patients with grade 3 and 4 adult-type diffuse gliomas (n = 35) were included in this prospective study. After registering 18F-FMISO PET and MR images, standardized uptake value (SUV) and apparent diffusion coefficient (ADC) were evaluated in hyperintense areas on fluid-attenuated inversion recovery (FLAIR) imaging (HIA), and in contrast-enhanced tumors (CET) by manually placing 3D volumes of interest. Relative SUVmax (rSUVmax) and SUVmean (rSUVmean), 10th percentile of ADC (ADC10pct), mean ADC (ADCmean) were measured in HIA and CET, respectively. RESULTS: rSUVmean in HIA and rSUVmean in CET were significantly higher in IDH-wildtype than in IDH-mutant (P = 0.0496 and 0.03, respectively). The combination of FMISO rSUVmean in HIA and ADC10pct in CET, that of rSUVmax and ADC10pct in CET, that of rSUVmean in HIA and ADCmean in CET, were able to differentiate IDH-mutant from IDH-wildtype (AUC 0.80). When confined to astrocytic tumors except for oligodendroglioma, rSUVmax, rSUVmean in HIA and rSUVmean in CET were higher for IDH-wildtype than for IDH-mutant, but not significantly (P = 0.23, 0.13 and 0.14, respectively). The combination of FMISO rSUVmean in HIA and ADC10pct in CET was able to differentiate IDH-mutant (AUC 0.81). CONCLUSION: PET using 18F-FMISO and ADC might provide a valuable tool for differentiating between IDH mutation status of 2021 WHO classification grade 3 and 4 adult-type diffuse gliomas.


Subject(s)
Brain Neoplasms , Glioma , Humans , Adult , Isocitrate Dehydrogenase/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Prospective Studies , Glioma/diagnostic imaging , Glioma/genetics , Glioma/pathology , Mutation , World Health Organization , Positron-Emission Tomography , Retrospective Studies
8.
Jpn J Radiol ; 41(11): 1216-1225, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37256470

ABSTRACT

PURPOSE: Neuromelanin-sensitive MRI (NM-MRI) has proven useful for diagnosing Parkinson's disease (PD) by showing reduced signals in the substantia nigra (SN) and locus coeruleus (LC), but requires a long scan time. The aim of this study was to assess the image quality and diagnostic performance of NM-MRI with a shortened scan time using a denoising approach with deep learning-based reconstruction (dDLR). MATERIALS AND METHODS: We enrolled 22 healthy volunteers, 22 non-PD patients and 22 patients with PD who underwent NM-MRI, and performed manual ROI-based analysis. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in ten healthy volunteers were compared among images with a number of excitations (NEX) of 1 (NEX1), NEX1 images with dDLR (NEX1 + dDLR) and 5-NEX images (NEX5). Acquisition times for NEX1 and NEX5 were 3 min 12 s and 15 min 58 s, respectively. Diagnostic performances using the contrast ratio (CR) of the SN (CR_SN) and LC (CR_LC) and those by visual assessment for differentiating PD from non-PD were also compared between NEX1 and NEX1 + dDLR. RESULTS: Image quality analyses revealed that SNRs and CNRs of the SN and LC in NEX1 + dDLR were significantly higher than in NEX1, and comparable to those in NEX5. In diagnostic performance analysis, areas under the receiver operating characteristic curve (AUC) using CR_SN and CR_LC of NEX1 + dDLR were 0.87 and 0.75, respectively, which had no significant difference with those of NEX1. Visual assessment showed improvement of diagnostic performance by applying dDLR. CONCLUSION: Image quality for NEX1 + dDLR was comparable to that of NEX5. dDLR has the potential to reduce scan time of NM-MRI without degrading image quality. Both 1-NEX NM-MRI with and without dDLR showed high AUCs for diagnosing PD by CR. The results of visual assessment suggest advantages of dDLR. Further tuning of dDLR would be expected to provide clinical merits in diagnosing PD.


Subject(s)
Deep Learning , Parkinson Disease , Humans , Magnetic Resonance Imaging/methods , Substantia Nigra , Melanins , Parkinson Disease/diagnostic imaging
9.
Clin Nucl Med ; 48(4): e212-e213, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36730900

ABSTRACT

ABSTRACT: Solitary intracranial tuberculomas are rare and frequently misdiagnosed as brain tumors. We report a case of intracranial tuberculous granuloma mimicking a high-grade glioma with avid uptake on 18 F-fluoromisonidazole PET/CT. It has been believed that hypoxia exists within the tuberculosis granuloma, and that this hypoxic environment causes Mycobacterium tuberculosis to lie dormant and asymptomatic infection to occur. This hypoxic and necrotic condition inside tuberculous granuloma may lead to high accumulation of 18 F-fluoromisonidazole in this case.


Subject(s)
Brain Neoplasms , Tuberculoma, Intracranial , Tuberculosis , Humans , Positron Emission Tomography Computed Tomography , Misonidazole
10.
J Neurosurg ; 138(1): 120-127, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35561695

ABSTRACT

OBJECTIVE: This study aimed to examine the association of preoperative intratumoral susceptibility signal (ITSS) grade with hemorrhage after stereotactic biopsy (STB). METHODS: The authors retrospectively reviewed 66 patients who underwent STB in their institution. Preoperative factors including age, sex, platelet count, prothrombin time-international normalized ratio, activated thromboplastin time, antiplatelet agent use, history of diabetes mellitus and hypertension, target location, anesthesia type, and ITSS data were recorded. ITSS was defined as a dot-like or fine linear low signal within a tumor on susceptibility-weighted imaging (SWI) and was graded using a 3-point scale: grade 1, no ITSS within the lesion; grade 2, 1-10 ITSSs; and grade 3, ≥ 11 ITSSs. Postoperative final tumor pathology was also reviewed. The association between preoperative variables and the size of postoperative hemorrhage was examined. RESULTS: Thirty-four patients were men and 32 were women. The mean age was 66.6 years. The most common tumor location was the frontal lobe (27.3%, n = 18). The diagnostic yield of STB was 93.9%. The most common pathology was lymphoma (36.4%, n = 24). The ITSS was grade 1 in 37 patients (56.1%), grade 2 in 14 patients (21.2%), and grade 3 in 15 patients (22.7%). Interobserver agreement for ITSS was almost perfect (weighted kappa = 0.87; 95% CI 0.77-0.98). Age was significantly associated with ITSS (p = 0.0075). Postoperative hemorrhage occurred in 17 patients (25.8%). Maximum hemorrhage diameter (mean ± SD) was 1.78 ± 1.35 mm in grade 1 lesions, 2.98 ± 2.2 mm in grade 2 lesions, and 9.51 ± 2.11 mm in grade 3 lesions (p = 0.01). Hemorrhage > 10 mm in diameter occurred in 10 patients (15.2%), being symptomatic in 3 of them. Four of 6 patients with grade 3 ITSS glioblastomas (66.7%) had postoperative hemorrhages > 10 mm in diameter. After adjusting for age, ITSS grade was the only factor significantly associated with hemorrhage > 10 mm (p = 0.029). Compared with patients with grade 1 ITSS, the odds of postoperative hemorrhage > 10 mm in diameter were 2.57 times higher in patients with grade 2 ITSS (95% CI 0.31-21.1) and 9.73 times higher in patients with grade 3 ITSS (95% CI 1.57-60.5). CONCLUSIONS: ITSS grade on SWI is associated with size of postoperative hemorrhage after STB.


Subject(s)
Brain Neoplasms , Glioblastoma , Male , Humans , Female , Aged , Retrospective Studies , Sensitivity and Specificity , Magnetic Resonance Imaging/methods , Glioblastoma/pathology , Postoperative Hemorrhage/diagnostic imaging , Postoperative Hemorrhage/epidemiology , Postoperative Hemorrhage/etiology , Risk Factors , Biopsy , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery
11.
Eur J Radiol ; 159: 110658, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36571926

ABSTRACT

PURPOSE: The telomerase reverse transcriptase promoter (TERTp) mutation is an unfavorable prognostic factor in isocitrate dehydrogenase-wildtype (IDHwt) histologically lower-grade astrocytoma (LGA), which was incorporated as a key component in the WHO 2021 classification of IDHwt LGA, replacing histologic grades in the WHO 2016 classification. The purpose of this study was to identify the imaging characteristics predictive of TERTp mutations in IDHwt LGA. METHODS: This retrospective study was approved by our institutional review board. This single-center study retrospectively included 59 patients with pathologically confirmed IDHwt LGA with known TERTp mutation status. In addition to clinical information and morphological characteristics, semi-quantitative imaging biomarkers such as the tumor-to-normal ratio (T/N ratio) on 18F-FDG-PET, normalized apparent diffusion coefficient (nADC), and histogram parameters from normalized relative cerebral blood volume (nrCBV) maps were compared between (a) TERTp-wildtype and TERTp-mutant tumors or (b) grade II and grade III astrocytoma. A p value < 0.05 was considered significant. RESULTS: There were no significant differences in the conventional imaging findings, T/N ratio on FDG-PET, nrCBV or ADC histogram metrics between IDHwt LGA with TERTp mutations and those without. Grade III IDHwt astrocytomas exhibited significantly higher nrCBV values, T/N ratio and lower ADC parameters than grade II IDHwt astrocytoma. CONCLUSIONS: In patients with IDHwt LGA, T/N ratio, nrCBV values and nADC may be surrogate markers for predicting histologic grade, but are not useful for predicting TERTp mutations.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioma , Telomerase , Humans , Astrocytoma/diagnostic imaging , Astrocytoma/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Fluorodeoxyglucose F18 , Glioma/diagnostic imaging , Glioma/genetics , Glioma/pathology , Isocitrate Dehydrogenase/genetics , Mutation , Perfusion , Retrospective Studies , Telomerase/genetics
12.
Ann Nucl Med ; 37(4): 209-218, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36585566

ABSTRACT

OBJECTIVE: A mobile PET scanner termed flexible PET (fxPET) has been designed to fit existing MRI systems. The purpose of this study was to assess brain imaging with fxPET combined with 3-T MRI in comparison with conventional PET (cPET)/CT. METHODS: In this prospective study, 29 subjects with no visible lesions except for mild leukoaraiosis on whole brain imaging underwent 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) cPET/CT followed by fxPET and MRI. The registration differences between fxPET and MRI and between cPET and CT were compared by measuring spatial coordinates. Three-dimensional magnetization-prepared rapid acquisition gradient-echo T1-weighted imaging (T1WI) was acquired. We applied two methods of attenuation correction to the fxPET images: MR-based attenuation correction, which yielded fxPETMRAC; and CT-based attenuation correction, which yielded fxPETCTAC. The three PET datasets were co-registered to the T1WI. Following subcortical segmentation and cortical parcellation, volumes of interest were placed in each PET image to assess physiological accumulation in the brain. SUVmean was obtained and compared between the three datasets. We also visually evaluated image distortion and clarity of fxPETMRAC. RESULTS: Mean misregistration of fxPET/MRI was < 3 mm for each margin. Mean registration differences were significantly larger for fxPET/MRI than for cPET/CT except for the superior margin. There were high correlations between the three PET datasets regarding SUVmean. On visual evaluation of image quality, the grade of distortion was comparable between fxPETMRAC and cPET, and the grade of clarity was acceptable but inferior for fxPETMRAC compared with cPET. CONCLUSIONS: fxPET could successfully determine physiological [18F]FDG uptake; however, improved image clarity is desirable. In this study, fxPET/MRI at 3-T was feasible for brain imaging.


Subject(s)
Fluorodeoxyglucose F18 , Multimodal Imaging , Humans , Prospective Studies , Multimodal Imaging/methods , Positron-Emission Tomography/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Neuroimaging
13.
Eur Radiol ; 33(6): 4488-4499, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36418626

ABSTRACT

OBJECTIVES: To evaluate susceptibility values associated with iron accumulation in the deep gray matter during postnatal development and to compare magnetic susceptibility between patients with normal and delayed development. METHODS: Patients with postmenstrual age (PMA) ≤ 1000 days underwent MR scans between August 2015 and April 2020 at our hospital. Quantitative susceptibility mapping (QSM) was performed, and magnetic susceptibility was measured using three-dimensional volumes of interest (VOIs) for the caudate nucleus (CN), globus pallidus (GP), putamen (PT), and ventrolateral thalamic nucleus (VL). Cross-sectional analysis was performed for 99 patients with normal development and 39 patients with delayed development. Longitudinal analysis was also performed to interpret changes over time in 13 patients with normal development. Correlations between magnetic susceptibility in VOIs and PMA or chronological age (CA) were assessed. RESULTS: Susceptibility values for CN, GP, PT, and VL showed positive moderate correlations with both PMA (ρ = 0.45, 0.69, 0.62, and 0.33, respectively) and CA (ρ = 0.53, 0.69, 0.66, and 0.39, respectively). The slope of the correlation between susceptibility values and age was highest in the GP among the four gray matter areas. Susceptibility values for the CN, GP, PT, and VL were higher with normal development than with delayed development at early postnatal age, although a significant difference was only observed for the CN. Susceptibility values also increased with age in the longitudinal analysis. CONCLUSIONS: Magnetic susceptibility values in deep gray matter increased with age ≤ 1000 days. The normal development group showed higher susceptibility values than the delayed development group at early postnatal age (PMA ≤ 285 days). KEY POINTS: • Magnetic susceptibilities in deep gray matter nuclei increased with age (postmenstrual age ≤ 1000 days) in a large number of pediatric patients. • The normal development group showed higher susceptibility values than the delayed development group in the basal ganglia and ventrolateral thalamic nucleus at early postnatal age (PMA ≤ 285 days).


Subject(s)
Gray Matter , Magnetic Resonance Imaging , Humans , Child , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging/methods , Cross-Sectional Studies , Iron , Caudate Nucleus , Brain Mapping/methods , Brain/diagnostic imaging
14.
Eur Radiol ; 33(4): 2895-2904, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36422648

ABSTRACT

OBJECTIVES: To assess the accuracy, repeatability, and reproducibility of T1 and T2 relaxation time measurements by three-dimensional magnetic resonance fingerprinting (3D MRF) using various dictionary resolutions. METHODS: The ISMRM/NIST phantom was scanned daily for 10 days in two 3 T MR scanners using a 3D MRF sequence reconstructed using four dictionaries with varying step sizes and one dictionary with wider ranges. Thirty-nine healthy volunteers were enrolled: 20 subjects underwent whole-brain MRF scans in both scanners and the rest in one scanner. ROI/VOI analyses were performed on phantom and brain MRF maps. Accuracy, repeatability, and reproducibility metrics were calculated. RESULTS: In the phantom study, all dictionaries showed high T1 linearity to the reference values (R2 > 0.99), repeatability (CV < 3%), and reproducibility (CV < 3%) with lower linearity (R2 > 0.98), repeatability (CV < 6%), and reproducibility (CV ≤ 4%) for T2 measurement. The volunteer study demonstrated high T1 reproducibility of within-subject CV (wCV) < 4% by all dictionaries with the same ranges, both in the brain parenchyma and CSF. Yet, reproducibility was moderate for T2 measurement (wCV < 8%). In CSF measurement, dictionaries with a smaller range showed a seemingly better reproducibility (T1, wCV 3%; T2, wCV 8%) than the much wider range dictionary (T1, wCV 5%; T2, wCV 13%). Truncated CSF relaxometry values were evident in smaller range dictionaries. CONCLUSIONS: The accuracy, repeatability, and reproducibility of 3D MRF across various dictionary resolutions were high for T1 and moderate for T2 measurements. A lower-resolution dictionary with a well-defined range may be adequate, thus significantly reducing the computational load. KEY POINTS: • A lower-resolution dictionary with a well-defined range may be sufficient for 3D MRF reconstruction. • CSF relaxation times might be underestimated due to truncation by the upper dictionary range. • Dictionary with a higher upper range might be advisable, especially for CSF evaluation and elderly subjects whose perivascular spaces are more prominent.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans , Aged , Image Processing, Computer-Assisted/methods , Reproducibility of Results , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Brain/diagnostic imaging , Phantoms, Imaging
15.
Eur Radiol ; 33(2): 936-946, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36006430

ABSTRACT

OBJECTIVES: To develop a generative adversarial network (GAN) model to improve image resolution of brain time-of-flight MR angiography (TOF-MRA) and to evaluate the image quality and diagnostic utility of the reconstructed images. METHODS: We included 180 patients who underwent 1-min low-resolution (LR) and 4-min high-resolution (routine) brain TOF-MRA scans. We used 50 patients' datasets for training, 12 for quantitative image quality evaluation, and the rest for diagnostic validation. We modified a pix2pix GAN to suit TOF-MRA datasets and fine-tuned GAN-related parameters, including loss functions. Maximum intensity projection images were generated and compared using multi-scale structural similarity (MS-SSIM) and information theoretic-based statistic similarity measure (ISSM) index. Two radiologists scored vessels' visibilities using a 5-point Likert scale. Finally, we evaluated sensitivities and specificities of GAN-MRA in depicting aneurysms, stenoses, and occlusions. RESULTS: The optimal model was achieved with a lambda of 1e5 and L1 + MS-SSIM loss. Image quality metrics for GAN-MRA were higher than those for LR-MRA (MS-SSIM, 0.87 vs. 0.73; ISSM, 0.60 vs. 0.35; p.adjusted < 0.001). Vessels' visibility of GAN-MRA was superior to LR-MRA (rater A, 4.18 vs. 2.53; rater B, 4.61 vs. 2.65; p.adjusted < 0.001). In depicting vascular abnormalities, GAN-MRA showed comparable sensitivities and specificities, with greater sensitivity for aneurysm detection by one rater (93% vs. 84%, p < 0.05). CONCLUSIONS: An optimized GAN could significantly improve the image quality and vessel visibility of low-resolution brain TOF-MRA with equivalent sensitivity and specificity in detecting aneurysms, stenoses, and occlusions. KEY POINTS: • GAN could significantly improve the image quality and vessel visualization of low-resolution brain MR angiography (MRA). • With optimally adjusted training parameters, the GAN model did not degrade diagnostic performance by generating substantial false positives or false negatives. • GAN could be a promising approach for obtaining higher resolution TOF-MRA from images scanned in a fraction of time.


Subject(s)
Brain , Magnetic Resonance Angiography , Humans , Magnetic Resonance Angiography/methods , Constriction, Pathologic , Brain/diagnostic imaging , Brain/blood supply , Magnetic Resonance Imaging , Cerebral Angiography/methods
16.
Magn Reson Med Sci ; 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36517008

ABSTRACT

Hemorrhage inside the mammillary bodies (MMBs) is known to be one of the findings of Wernicke encephalopathy. Brain MRI of two patients with Wernicke-Korsakoff syndrome (WKS) demonstrated high susceptibility values representing hemosiderin deposition in MMBs by using quantitative susceptibility mapping (QSM). QSM provided additional information of susceptibility values to susceptibility-weighted imaging in diagnosis of WKS.

17.
Sci Rep ; 12(1): 17689, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271294

ABSTRACT

Diffusion-weighted magnetic resonance imaging is prone to have susceptibility artifacts in an inhomogeneous magnetic field. We compared distortion and artifacts among three diffusion acquisition techniques (single-shot echo-planar imaging [SS-EPI DWI], readout-segmented EPI [RESOLVE DWI], and 2D turbo gradient- and spin-echo diffusion-weighted imaging with non-Cartesian BLADE trajectory [TGSE-BLADE DWI]) in healthy volunteers and in patients with a cerebral aneurysm clip. Seventeen healthy volunteers and 20 patients who had undergone surgical cerebral aneurysm clipping were prospectively enrolled. SS-EPI DWI, RESOLVE DWI, and TGSE-BLADE DWI of the brain were performed using 3 T scanners. Distortion was the least in TGSE-BLADE DWI, and lower in RESOLVE DWI than SS-EPI DWI near air-bone interfaces in healthy volunteers (P < 0.001). Length of clip-induced artifact and distortion near the metal clip were the least in TGSE-BLADE DWI, and lower in RESOLVE DWI than SS-EPI DWI (P < 0.01). Image quality scores for geometric distortion, susceptibility artifacts, and overall image quality in both healthy volunteers and patients were the best in TGSE-BLADE DWI, and better in RESOLVE DWI than SS-EPI DWI (P < 0.001). Among the three DWI sequences, image quality was the best in TGSE-BLADE DWI in terms of distortion and artifacts, in both healthy volunteers and patients with an aneurysm clip.


Subject(s)
Echo-Planar Imaging , Intracranial Aneurysm , Humans , Echo-Planar Imaging/methods , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/surgery , Healthy Volunteers , Reproducibility of Results , Surgical Instruments
18.
Radiol Med ; 127(9): 1032-1045, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35907157

ABSTRACT

Vessel wall MR imaging (VW-MRI) has been introduced into clinical practice and applied to a variety of diseases, and its usefulness has been reported. High-resolution VW-MRI is essential in the diagnostic workup and provides more information than other routine MR imaging protocols. VW-MRI is useful in assessing lesion location, morphology, and severity. Additional information, such as vessel wall enhancement, which is useful in the differential diagnosis of atherosclerotic disease and vasculitis could be assessed by this special imaging technique. This review describes the VW-MRI technique and its clinical applications in arterial disease, venous disease, vasculitis, and leptomeningeal disease.


Subject(s)
Magnetic Resonance Imaging , Vasculitis , Humans , Magnetic Resonance Angiography/methods , Magnetic Resonance Imaging/methods
19.
Magn Reson Med ; 88(2): 546-574, 2022 08.
Article in English | MEDLINE | ID: mdl-35452155

ABSTRACT

Amide proton transfer-weighted (APTw) MR imaging shows promise as a biomarker of brain tumor status. Currently used APTw MRI pulse sequences and protocols vary substantially among different institutes, and there are no agreed-on standards in the imaging community. Therefore, the results acquired from different research centers are difficult to compare, which hampers uniform clinical application and interpretation. This paper reviews current clinical APTw imaging approaches and provides a rationale for optimized APTw brain tumor imaging at 3 T, including specific recommendations for pulse sequences, acquisition protocols, and data processing methods. We expect that these consensus recommendations will become the first broadly accepted guidelines for APTw imaging of brain tumors on 3 T MRI systems from different vendors. This will allow more medical centers to use the same or comparable APTw MRI techniques for the detection, characterization, and monitoring of brain tumors, enabling multi-center trials in larger patient cohorts and, ultimately, routine clinical use.


Subject(s)
Brain Neoplasms , Amides , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Consensus , Dimaprit/analogs & derivatives , Humans , Magnetic Resonance Imaging/methods , Protons
20.
Eur J Radiol ; 151: 110294, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35427840

ABSTRACT

PURPOSE: The aim of this study was to examine the evaluation of ultra-high-resolution computed tomography angiography (UHR CTA) images in moyamoya disease (MMD) reconstructed with hybrid iterative reconstruction (Hybrid-IR), model-based iterative reconstruction (MBIR), and deep learning reconstruction (DLR). METHODS: This retrospective study with institutional review board approval included patients with clinically suspected MMD who underwent UHR CTA between January 2018 and July 2020. CTA images were reconstructed with three reconstruction methods. Qualitative visualization was evaluated in comparison with digital subtraction angiography. Quantitative evaluation included assessment of edge sharpness, full width at half maximum (FWHM), vessel contrast, and tissue signal-to-noise ratio (SNRtissue). One-way analysis of variance was used to analyze differences. In addition, reconstruction time were assessed. RESULTS: Qualitative evaluation of CTA for 33 sides did not differ significantly between reconstruction methods. In quantitative evaluation for 54 patients, edge sharpness for right and left cortical segments of the middle cerebral artery was significantly higher for Hybrid-IR than for other reconstructions. No significant difference was seen between MBIR and DLR. Edge sharpness for STA-MCA bypass was significantly higher for Hybrid-IR than for MBIR, but no significant difference was seen between Hybrid-IR and DLR. FWHM for STA-MCA showed no significant difference between the three reconstruction methods. DLR displayed the highest SNRtissue. The time required for reconstruction was 40 s for Hybrid-IR, 2580 s for MBIR, and 180 s for DLR. CONCLUSION: UHR CTA with DLR adequately visualized vessels in patients with MMD within a clinically feasible reconstruction time.


Subject(s)
Deep Learning , Moyamoya Disease , Algorithms , Computed Tomography Angiography , Humans , Moyamoya Disease/diagnostic imaging , Moyamoya Disease/surgery , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted/methods , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...