Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(17): 171403, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37955493

ABSTRACT

We present a new, simulation-based inference method to compute the angular power spectrum of the distribution of foreground gravitational-wave transient events. As a first application of this method, we use the binary black hole mergers observed during the LIGO, Virgo, and KAGRA third observation run to test the spatial distribution of these sources. We find no evidence for anisotropy in their angular distribution. We discuss further applications of this method to investigate other gravitational-wave source populations and their correlations to the cosmological large-scale structure.

2.
Phys Rev Lett ; 130(23): 231401, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37354402

ABSTRACT

Using conformal invariance of gravitational waves, we show that for a luminal modified gravity theory, the gravitational-wave propagation and luminosity distance are the same as in general relativity. The relation between the gravitational-wave and electromagnetic-wave luminosity distance gets modified, however, for electromagnetism minimally coupled to the Jordan frame metric. Using effective field theory we show that the modified relation obtained for luminal theories is also valid for nonluminal theories with Jordan frame matter-gravity coupling. We generalize our analysis to a time-dependent speed of gravitational waves with matter minimally coupled to either the Jordan or Einstein frame metrics.

3.
Phys Rev Lett ; 130(9): 091401, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36930894

ABSTRACT

The noise produced by the inspiral of millions of white dwarf binaries in the Milky Way may pose a threat to one of the main goals of the space-based LISA mission: the detection of massive black hole binary mergers. We present a novel study for reconstruction of merger waveforms in the presence of Galactic confusion noise using dictionary learning. We discuss the limitations of untangling signals from binaries with total mass from 10^{2} M_{⊙} to 10^{4} M_{⊙}. Our method proves extremely successful for binaries with total mass greater than ∼3×10^{3} M_{⊙} up to redshift 3 in conservative scenarios, and up to redshift 7.5 in optimistic scenarios. In addition, consistently good waveform reconstruction of merger events is found if the signal-to-noise ratio is approximately 5 or greater.

4.
Gen Relativ Gravit ; 54(12): 156, 2022.
Article in English | MEDLINE | ID: mdl-36465478

ABSTRACT

Detection of a gravitational-wave signal of non-astrophysical origin would be a landmark discovery, potentially providing a significant clue to some of our most basic, big-picture scientific questions about the Universe. In this white paper, we survey the leading early-Universe mechanisms that may produce a detectable signal-including inflation, phase transitions, topological defects, as well as primordial black holes-and highlight the connections to fundamental physics. We review the complementarity with collider searches for new physics, and multimessenger probes of the large-scale structure of the Universe.

5.
Phys Rev Lett ; 128(5): 051301, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35179921

ABSTRACT

The formation of primordial black holes from inflationary fluctuations is accompanied by a scalar induced gravitational wave background. We perform a Bayesian search of such background in the data from Advanced LIGO and Virgo's first, second, and third observing runs, parametrizing the peak in the curvature power spectrum by a log-normal distribution. The search shows no evidence for such a background. We place 95% confidence level upper limits on the integrated power of the curvature power spectrum peak which, for a narrow width, reaches down to 0.02 at 10^{17} Mpc^{-1}. The resulting constraints are stronger than those arising from big bang nucleosynthesis or cosmic microwave background observations. In addition, we find that the constraints from LIGO and Virgo, at their design sensitivity, and from the Einstein Telescope can compete with those related to the abundance of the formed primordial black holes.

6.
Phys Rev Lett ; 127(16): 161101, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34723593

ABSTRACT

Light axion fields, if they exist, can be sourced by neutron stars due to their coupling to nuclear matter, and play a role in binary neutron star mergers. We report on a search for such axions by analyzing the gravitational waves from the binary neutron star inspiral GW170817. We find no evidence of axions in the sampled parameter space. The null result allows us to impose constraints on axions with masses below 10^{-11} eV by excluding the ones with decay constants ranging from 1.6×10^{16} to 10^{18} GeV at a 3σ confidence level. Our analysis provides the first constraints on axions from neutron star inspirals, and rules out a large region in parameter space that has not been probed by the existing experiments.

7.
Phys Rev Lett ; 126(15): 151301, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33929242

ABSTRACT

We place constraints on the normalized energy density in gravitational waves from first-order strong phase transitions using data from Advanced LIGO and Virgo's first, second, and third observing runs. First, adopting a broken power law model, we place 95% confidence level upper limits simultaneously on the gravitational-wave energy density at 25 Hz from unresolved compact binary mergers, Ω_{CBC}<6.1×10^{-9}, and strong first-order phase transitions, Ω_{BPL}<4.4×10^{-9}. The inclusion of the former is necessary since we expect this astrophysical signal to be the foreground of any detected spectrum. We then consider two more complex phenomenological models, limiting at 25 Hz the gravitational-wave background due to bubble collisions to Ω_{pt}<5.0×10^{-9} and the background due to sound waves to Ω_{pt}<5.8×10^{-9} at 95% confidence level for phase transitions occurring at temperatures above 10^{8} GeV.

8.
Phys Rev Lett ; 122(11): 111101, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30951324

ABSTRACT

We use population inference to explore the impact that uncertainties in the distribution of binary black holes (BBH) have on the astrophysical gravitational-wave background (AGWB). Our results show that the AGWB monopole is sensitive to the nature of the BBH population (particularly the local merger rate), while the anisotropic C_{ℓ} spectrum is only modified to within a few percent, at a level which is insignificant compared to other sources of uncertainty (such as cosmic variance). This is very promising news for future observational studies of the AGWB, as it shows that (i) the monopole can be used as a new probe of the population of compact objects throughout cosmic history, complementary to direct observations by LIGO and Virgo and (ii) we are able to make surprisingly robust predictions for the C_{ℓ} spectrum, even with only very approximate knowledge of the black hole population. As a result, the AGWB anisotropies have enormous potential as a new probe of the large-scale structure of the Universe, and of late-Universe cosmology in general.

9.
Eur Phys J C Part Fields ; 77(7): 445, 2017.
Article in English | MEDLINE | ID: mdl-28943790

ABSTRACT

Motivated by the recent breakthrough of the detection of Gravitational Waves (GW) from coalescent black holes by the aLIGO interferometers, we study the propagation of GW in the D-material universe, which we have recently shown to be compatible with large-scale structure and inflationary phenomenology. The medium of D-particles induces an effective mass for the graviton, as a consequence of the formation of recoil-velocity field condensates due to the underlying Born-Infeld dynamics. There is a competing effect, due to a super-luminal refractive index, as a result of the gravitational energy of D-particles acting as a dark-matter component, with which propagating gravitons interact. We examine conditions for the condensate under which the latter effect is sub-leading. We argue that if quantum fluctuations of the recoil velocity are relatively strong, which can happen in the current era of the universe, then the condensate, and hence the induced mass of the graviton, can be several orders of magnitude larger than the magnitude of the cosmological constant today. Hence, we constrain the graviton mass using aLIGO and pulsar-timing observations (which give the most stringent bounds at present). In such a sub-luminal graviton case, there is also a gravitational Cherenkov effect for ordinary high-energy cosmic matter, which is further constrained by means of ultra-high-energy cosmic ray observations. Assuming cosmic rays of extragalactic origin, the bounds on the quantum condensate strength, based on the gravitational Cherenkov effect, are of the same order as those from aLIGO measurements, in contrast to the case where a galactic origin of the cosmic rays is assumed, in which case the corresponding bounds are much weaker.

10.
Eur Phys J C Part Fields ; 77(9): 605, 2017.
Article in English | MEDLINE | ID: mdl-32009847

ABSTRACT

We introduce an extension of the Standard Model and General Relativity built upon the principle of local conformal invariance, which represents a generalization of a previous work by Bars, Steinhardt and Turok. This is naturally realized by adopting as a geometric framework a particular class of non-Riemannian geometries, first studied by Weyl. The gravitational sector is enriched by a scalar and a vector field. The latter has a geometric origin and represents the novel feature of our approach. We argue that physical scales could emerge from a theory with no dimensionful parameters, as a result of the spontaneous breakdown of conformal and electroweak symmetries. We study the dynamics of matter fields in this modified gravity theory and show that test particles follow geodesics of the Levi-Civita connection, thus resolving an old criticism raised by Einstein against Weyl's original proposal.

11.
Phys Rev Lett ; 105(10): 101602, 2010 Sep 03.
Article in English | MEDLINE | ID: mdl-20867510

ABSTRACT

The noncommutative spectral action extends our familiar notion of commutative spaces, using the data encoded in a spectral triple on an almost commutative space. Varying a rather simple action, one can derive all of the standard model of particle physics in this setting, in addition to a modified version of Einstein-Hilbert gravity. In this Letter we use observations of pulsar timings, assuming that no deviation from general relativity has been observed, to constrain the gravitational sector of this theory. While the bounds on the coupling constants remain rather weak, they are comparable to existing bounds on deviations from general relativity in other settings and are likely to be further constrained by future observations.

12.
Philos Trans A Math Phys Eng Sci ; 366(1877): 2881-94, 2008 Aug 28.
Article in English | MEDLINE | ID: mdl-18534932

ABSTRACT

Cosmic superstrings are expected to be formed at the end of brane inflation, within the context of brane-world cosmological models inspired from string theory. By studying the properties of cosmic superstring networks and comparing their phenomenological consequences against observational data, we aim to pin down the successful and natural inflationary model and get an insight into the stringy description of our Universe.

13.
Phys Rev Lett ; 100(3): 031302, 2008 Jan 25.
Article in English | MEDLINE | ID: mdl-18232960

ABSTRACT

To test modified Newtonian dynamics (MOND) on galactic scales, we study six strong gravitational lensing early-type galaxies from the CASTLES sample. Comparing the total mass (from lensing) with the stellar mass content (from a comparison of photometry and stellar population synthesis), we conclude that strong gravitational lensing on galactic scales requires a significant amount of dark matter, even within MOND. On such scales a 2 eV neutrino cannot explain the excess of matter in contrast with recent claims to explain the lensing data of the bullet cluster. The presence of dark matter is detected in regions with a higher acceleration than the characteristic MOND scale of approximately 10(-10) m/s(2). This is a serious challenge to MOND unless lensing is qualitatively different [possibly to be developed within a covariant, such as Tensor-Vector-Scalar (TeVeS), theory].

14.
Phys Rev Lett ; 94(1): 011303, 2005 Jan 14.
Article in English | MEDLINE | ID: mdl-15698061

ABSTRACT

Standard D-term inflation is studied in the framework of supergravity. D-term inflation produces cosmic strings; however, it can still be compatible with cosmic microwave background (CMB) measurements without invoking any new physics. The cosmic strings contribution to the CMB data is not constant, nor dominant, contrary to some previous results. Using current CMB measurements, the free parameters (gauge and superpotential couplings, as well as the Fayet-Iliopoulos term) of D-term inflation are constrained.

SELECTION OF CITATIONS
SEARCH DETAIL
...