Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Front Immunol ; 15: 1324018, 2024.
Article in English | MEDLINE | ID: mdl-38449863

ABSTRACT

The bidirectional communication between the gut and brain or gut-brain axis is regulated by several gut microbes and microbial derived metabolites, such as short-chain fatty acids, trimethylamine N-oxide, and lipopolysaccharides. The Gut microbiota (GM) produce neuroactives, specifically neurotransmitters that modulates local and central neuronal brain functions. An imbalance between intestinal commensals and pathobionts leads to a disruption in the gut microbiota or dysbiosis, which affects intestinal barrier integrity and gut-immune and neuroimmune systems. Currently, fecal microbiota transplantation (FMT) is recommended for the treatment of recurrent Clostridioides difficile infection. FMT elicits its action by ameliorating inflammatory responses through the restoration of microbial composition and functionality. Thus, FMT may be a potential therapeutic option in suppressing neuroinflammation in post-stroke conditions and other neurological disorders involving the neuroimmune axis. Specifically, FMT protects against ischemic injury by decreasing IL-17, IFN-γ, Bax, and increasing Bcl-2 expression. Interestingly, FMT improves cognitive function by lowering amyloid-ß accumulation and upregulating synaptic marker (PSD-95, synapsin-1) expression in Alzheimer's disease. In Parkinson's disease, FMT was shown to inhibit the expression of TLR4 and NF-κB. In this review article, we have summarized the potential sources and methods of administration of FMT and its impact on neuroimmune and cognitive functions. We also provide a comprehensive update on the beneficial effects of FMT in various neurological disorders by undertaking a detailed interrogation of the preclinical and clinical published literature.


Subject(s)
Ischemic Stroke , Nervous System Diseases , Parkinson Disease , Stroke , Humans , Fecal Microbiota Transplantation , Nervous System Diseases/therapy , Stroke/therapy
2.
Neurobiol Dis ; 192: 106423, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286388

ABSTRACT

Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite produced by the action of gut microbiota and the hepatic enzyme Flavin Mono­oxygenase 3 (FMO3). TMAO level has a positive correlation with the risk of cardiovascular events, including stroke, and their level is influenced mainly by dietary choice and the action of liver enzyme FMO3. TMAO plays a role in the development of atherosclerosis plaque, which is one of the causative factors of the stroke event. Preclinical and clinical investigations on the TMAO and associated stroke risk, severity, and outcomes are summarised in this review. In addition, mechanisms of TMAO-driven vascular dysfunction are also discussed, such as inflammation, oxidative stress, thrombus and foam cell formation, altered cholesterol and bile acid metabolism, etc. Post-stroke inflammatory cascades involving activation of immune cells, i.e., microglia and astrocytes, result in Blood-brain-barrier (BBB) disruption, allowing TMAO to infiltrate the brain and further aggravate inflammation. This event occurs as a result of the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway through the release of inflammatory cytokines and chemokines that further aggravate the BBB and initiate further recruitment of immune cells in the brain. Thus, it's likely that maintaining TMAO levels and associated gut microbiota could be a promising approach for treating and improving stroke complications.


Subject(s)
Methylamines , Stroke , Humans , Inflammation , Oxides
3.
ACS Omega ; 9(3): 3164-3172, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38284070

ABSTRACT

Over the past few decades, it has been well established that gut microbiota-derived metabolites can disrupt gut function, thus resulting in an array of diseases. Notably, phenylacetylglutamine (PAGln), a bacterial derived metabolite, has recently gained attention due to its role in the initiation and progression of cardiovascular and cerebrovascular diseases. This meta-organismal metabolite PAGln is a byproduct of amino acid acetylation of its precursor phenylacetic acid (PAA) from a range of dietary sources like egg, meat, dairy products, etc. The microbiota-dependent metabolism of phenylalanine produces PAA, which is a crucial intermediate that is catalyzed by diverse microbial catalytic pathways. PAA conjugates with glutamine and glycine in the liver and kidney to predominantly form phenylacetylglutamine in humans and phenylacetylglycine in rodents. PAGln is associated with thrombosis as it enhances platelet activation mediated through the GPCRs receptors α2A, α2B, and ß2 ADRs, thereby aggravating the pathological conditions. Clinical evidence suggests that elevated levels of PAGln are associated with pathology of cardiovascular, cerebrovascular, and neurological diseases. This Review further consolidates the microbial/biochemical synthesis of PAGln and discusses its role in the above pathophysiologies.

4.
Biomolecules ; 13(8)2023 07 31.
Article in English | MEDLINE | ID: mdl-37627261

ABSTRACT

Polyphenols are secondary metabolites from plant origin and are shown to possess a wide range of therapeutic benefits. They are also reported as regulators of autophagy, inflammation and neurodegeneration. The autophagy pathway is vital in degrading outdated organelles, proteins and other cellular wastes. The dysregulation of autophagy causes proteinopathies, mitochondrial dysfunction and neuroinflammation thereby contributing to neurodegeneration. Evidence reveals that polyphenols improve autophagy by clearing misfolded proteins in the neurons, suppress neuroinflammation and oxidative stress and also protect from neurodegeneration. This review is an attempt to summarize the mechanism of action of polyphenols in modulating autophagy and their involvement in pathways such as mTOR, AMPK, SIRT-1 and ERK. It is evident that polyphenols cause an increase in the levels of autophagic proteins such as beclin-1, microtubule-associated protein light chain (LC3 I and II), sirtuin 1 (SIRT1), etc. Although it is apparent that polyphenols regulate autophagy, the exact interaction of polyphenols with autophagy markers is not known. These data require further research and will be beneficial in supporting polyphenol supplementation as a potential alternative treatment for regulating autophagy in neurodegenerative diseases.


Subject(s)
Neurodegenerative Diseases , Neuroinflammatory Diseases , Humans , Autophagy , Neurodegenerative Diseases/drug therapy , Beclin-1 , Polyphenols/pharmacology , Polyphenols/therapeutic use
5.
PLoS One ; 18(5): e0286111, 2023.
Article in English | MEDLINE | ID: mdl-37220155

ABSTRACT

Sphingosine-1-phosphate (S1P) is a potent sphingolipid metabolite that regulates a wide range of biological functions such as cell proliferation, cell apoptosis and angiogenesis. Its cellular level is elevated in breast cancer, which, in turn, would promote cancer cell proliferation, survival, growth and metastasis. However, the cellular concentration of S1P is normally in the low nanomolar range, and our previous studies showed that S1P selectively induced apoptosis of breast cancer cells at high concentrations (high nanomolar to low micromolar). Thus, local administration of high-concentration S1P alone or in combination of chemotherapy agents could be used to treat breast cancer. The breast mainly consists of mammary gland and connective tissue stroma (adipose), which are dynamically interacting each other. Thus, in the current study, we evaluated how normal adipocyte-conditioned cell culture media (AD-CM) and cancer-associated adipocyte-conditioned cell culture media (CAA-CM) would affect high-concentration S1P treatment of triple-negative breast cancer (TNBC) cells. Both AD-CM and CAA-CM may suppress the anti-proliferative effect and reduce nuclear alteration/apoptosis caused by high-concentration S1P. This implicates that adipose tissue is likely to be detrimental to local high-concentration S1P treatment of TNBC. Because the interstitial concentration of S1P is about 10 times higher than its cellular level, we undertook a secretome analysis to understand how S1P would affect the secreted protein profile of differentiated SGBS adipocytes. At 100 nM S1P treatment, we identified 36 upregulated and 21 downregulated secretome genes. Most of these genes are involved in multiple biological processes. Further studies are warranted to identify the most important secretome targets of S1P in adipocytes and illustrate the mechanism on how these target proteins affect S1P treatment of TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Adipocytes , Lysophospholipids , Cell Culture Techniques , Culture Media, Conditioned
6.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36558950

ABSTRACT

Hypericum kouytchense Lévl is a semi-evergreen plant of the Hypericaceae family. Its roots and seeds have been used in a number of traditional remedies for antipyretic, detoxification, anti-inflammatory, antimicrobial and antiviral functions. However, to date, no bioactivity compounds have been characterized from the insect gall of H. kouytchens. In this study, we evaluated the antiviral activities of different extracts from the insect gall of H. kouytchen against cathepsin L, HIV-1 and renin proteases and identified the active ingredients using UPLC-HRMS. Four different polar extracts (HW, H30, H60 and H85) of the H. kouytchense insect gall exhibited antiviral activities with IC50 values of 10.0, 4.0, 3.2 and 17.0 µg/mL against HIV-1 protease; 210.0, 34.0, 24.0 and 30.0 µg/mL against cathepsin L protease; and 180.0, 65.0, 44.0 and 39.0 µg/mL against human renin, respectively. Ten compounds were identified and quantified in the H. kouytchense insect gall extracts. Epicatechin, eriodictyol and naringenin chalcone were major ingredients in the extracts with contents ranging from 3.9 to 479.2 µg/mg. For HIV-1 protease, seven compounds showed more than 65% inhibition at a concentration of 1000.0 µg/mL, especially for hypericin and naringenin chalcone with IC50 values of 1.8 and 33.0 µg/mL, respectively. However, only hypericin was active against cathepsin L protease with an IC50 value of 17100.0 µg/mL, and its contents were from 0.99 to 11.65 µg/mg. Furthermore, we attempted to pinpoint the interactions between the active compounds and the proteases using molecular docking analysis. Our current results imply that the extracts and active ingredients could be further formulated and/or developed for potential prevention and treatment of HIV or SARS-CoV-2 infections.

7.
Int J Mol Sci ; 23(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36293321

ABSTRACT

Colorectal cancer (CRC) is a leading cause of death from cancer in Canada. Early detection of CRC remains crucial in managing disease prognosis and improving patient survival. It can also facilitate prevention, screening, and treatment before the disease progresses to a chronic stage. In this study, we developed a strategy for identifying colon cancer biomarkers from both gene expression and gene pair correlation. Using the RNA-Seq dataset TCGA-COAD, a panel of 71 genes, including the 20 most upregulated genes, 20 most downregulated genes and 31 genes involved in the most significantly altered gene pairs, were selected as potential biomarkers for colon cancer. This signature set of genes could be used for early diagnosis. Furthermore, this strategy could be applied to other types of cancer.


Subject(s)
Colonic Neoplasms , Humans , Colonic Neoplasms/diagnosis , Colonic Neoplasms/genetics , Biomarkers, Tumor/genetics , Canada , Gene Expression Regulation, Neoplastic
8.
Mol Neurobiol ; 59(11): 6684-6700, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35986843

ABSTRACT

Trimethylamine lyases are expressed in a wide range of intestinal microbiota which metabolize dietary nutrients like choline, betaine, and L-carnitine to form trimethylamine (TMA). Trimethylamine N-oxide (TMAO) is an oxidative product of trimethylamine (TMA) catalyzed by the action of flavin monooxygenases (FMO) in the liver. Higher levels of TMAO in the plasma and cerebrospinal fluid (CSF) have been shown to contribute to the development of risk factors and actively promote the pathogenesis of metabolic, cardiovascular, and cerebrovascular diseases. The investigations on the harmful effects of TMAO in the development and progression of neurodegenerative and sleep disorders are summarized in this manuscript. Clinical investigations on the role of TMAO in predicting risk factors and prognostic factors in patients with neurological disorders are also summarized. It is observed that the mechanisms underlying TMAO-mediated pathogenesis include activation of inflammatory signaling pathways such as nuclear factor kappa B (NF-κß), NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, and MAPK/JNK in the periphery and brain. Data suggests that TMAO levels increase with age-related cognitive dysfunction and also induce mitochondrial dysfunction, oxidative stress, neuronal senescence, and synaptic damage in the brain. Further research into the relationships between dietary food consumption and gut microbiota-dependent TMAO levels could provide novel therapeutic options for neurological illnesses.


Subject(s)
Gastrointestinal Microbiome , Lyases , Nervous System Diseases , Betaine/metabolism , Carnitine , Choline/metabolism , Flavins , Gastrointestinal Microbiome/physiology , Humans , Inflammasomes , Methylamines/metabolism , Mixed Function Oxygenases , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein
9.
Biomolecules ; 11(11)2021 11 10.
Article in English | MEDLINE | ID: mdl-34827667

ABSTRACT

The past few decades have seen an increased emphasis on the involvement of the mitochondrial-associated membrane (MAM) in various neurodegenerative diseases, particularly in Parkinson's disease (PD) and Alzheimer's disease (AD). In PD, alterations in mitochondria, endoplasmic reticulum (ER), and MAM functions affect the secretion and metabolism of proteins, causing an imbalance in calcium homeostasis and oxidative stress. These changes lead to alterations in the translocation of the MAM components, such as IP3R, VDAC, and MFN1 and 2, and consequently disrupt calcium homeostasis and cause misfolded proteins with impaired autophagy, distorted mitochondrial dynamics, and cell death. Various reports indicate the detrimental involvement of the brain renin-angiotensin system (RAS) in oxidative stress, neuroinflammation, and apoptosis in various neurodegenerative diseases. In this review, we attempted to update the reports (using various search engines, such as PubMed, SCOPUS, Elsevier, and Springer Nature) demonstrating the pathogenic interactions between the various proteins present in mitochondria, ER, and MAM with respect to Parkinson's disease. We also made an attempt to speculate the possible involvement of RAS and its components, i.e., AT1 and AT2 receptors, angiotensinogen, in this crosstalk and PD pathology. The review also collates and provides updated information on the role of MAM in calcium signaling, oxidative stress, neuroinflammation, and apoptosis in PD.


Subject(s)
Renin-Angiotensin System , Endoplasmic Reticulum , Humans , Neuroinflammatory Diseases , Parkinson Disease
10.
ASN Neuro ; 13: 17590914211028364, 2021.
Article in English | MEDLINE | ID: mdl-34304614

ABSTRACT

Mitochondrial dysfunction is a well-established pathological event in Parkinson's disease (PD). Proteins misfolding and its impaired cellular clearance due to altered autophagy/mitophagy/pexophagy contribute to PD progression. It has been shown that mitochondria have contact sites with endoplasmic reticulum (ER), peroxisomes and lysosomes that are involved in regulating various physiological processes. In pathological conditions, the crosstalk at the contact sites initiates alterations in intracellular vesicular transport, calcium homeostasis and causes activation of proteases, protein misfolding and impairment of autophagy. Apart from the well-reported molecular changes like mitochondrial dysfunction, impaired autophagy/mitophagy and oxidative stress in PD, here we have summarized the recent scientific reports to provide the mechanistic insights on the altered communications between ER, peroxisomes, and lysosomes at mitochondrial contact sites. Furthermore, the manuscript elaborates on the contributions of mitochondrial contact sites and organelles dysfunction to the pathogenesis of PD and suggests potential therapeutic targets.


Subject(s)
Parkinson Disease , Endoplasmic Reticulum/metabolism , Humans , Mitochondria/metabolism , Mitophagy , Oxidative Stress , Parkinson Disease/metabolism
11.
Front Cell Dev Biol ; 9: 673395, 2021.
Article in English | MEDLINE | ID: mdl-34124057

ABSTRACT

Parkinson's disease (PD) is a pathological condition characterized by the aggregation and the resultant presence of intraneuronal inclusions termed Lewy bodies (LBs) and Lewy neurites which are mainly composed of fibrillar α-synuclein (α-syn) protein. Pathogenic aggregation of α-syn is identified as the major cause of LBs deposition. Several mutations in α-syn showing varied aggregation kinetics in comparison to the wild type (WT) α-syn are reported in PD (A30P, E46K, H 50Q, G51D, A53E, and A53T). Also, the cell-to-cell spread of pathological α-syn plays a significant role in PD development. Interestingly, it has also been suggested that the pathology of PD may begin in the gastrointestinal tract and spread via the vagus nerve (VN) to brain proposing the gut-brain axis of α-syn pathology in PD. Despite multiple efforts, the behavior and functions of this protein in normal and pathological states (specifically in PD) is far from understood. Furthermore, the etiological factors responsible for triggering aggregation of this protein remain elusive. This review is an attempt to collate and present latest information on α-syn in relation to its structure, biochemistry and biophysics of aggregation in PD. Current advances in therapeutic efforts toward clearing the pathogenic α-syn via autophagy/lysosomal flux are also reviewed and reported.

12.
Genes Cancer ; 12: 69-76, 2021.
Article in English | MEDLINE | ID: mdl-34163562

ABSTRACT

Cancer is a highly malignant disease, killing approximately 10 million people worldwide in 2020. Cancer patient survival substantially relies on early diagnosis. In this study, we evaluated whether genes involved in glucose metabolism could be used as potential diagnostic markers for cancer. In total, 127 genes were examined for their gene expression levels and pairwise gene correlations. Genes ADH1B and PDHA2 were differentially expressed in most of the 12 types of cancer and five pairs of genes exhibited consistent correlation changes (from strong correlations in normal controls to weak correlations in cancer patients) across all types of cancer. Thus, the two differentially expressed genes and five gene pairs could be potential diagnostic markers for cancer. Further preclinical and clinical studies are warranted to prove whether these genes and/or gene pairs would indeed aid in early diagnosis of cancer.

13.
Front Biosci (Landmark Ed) ; 26(6): 114-124, 2021 05 30.
Article in English | MEDLINE | ID: mdl-34162040

ABSTRACT

Sleep deprivation (SD) is commonly associated with decreased attention, reduced responsiveness to external stimuli, and impaired locomotor and cognitive performances. Strong evidence indicates that SD disrupts neuro-immuno-endocrine system which is also linked to cognitive function. Recently Zebrafish have emerged as a powerful model sharing organizational and functional characteristics with other vertebrates, providing great translational relevance with rapid and reliable screening results. In the current study, we examined the effects of acetylsalicylic acid (aspirin) on cognitive and locomotor activity in sleep deprived Zebrafish model. Learning and memory were assessed by T-maze and locomotor activity was assessed by partition preference and swimming time in spinning tasks. Furthermore, brain bioavailability of aspirin was determined by high performance liquid chromatography. Following drug exposure and tasks, histopathology of the brain was performed. It was observed that three-day SD significantly reduces learning and memory and locomotion in the Zebrafish. Aspirin was found to restore SD induced cognitive decline and improve the locomotor functions. Neuro-inflammation and impaired functional network connectivity is linked to cognitive defects, which implicate the possible benefits of immunotherapeutics. In the present study, aspirin decreased neutrophil infiltration, and increased spine density in dentate gyrus granular and shrinkage and basophil in the CA1 neurons of hippocampus. This hints the benefit of aspirin on neuroimmune functions in sleep deprived fish and warrants more studies to establish the clear molecular mechanism behind this protective effect.


Subject(s)
Aspirin/pharmacology , Cognition/drug effects , Sleep Deprivation , Animals , Aspirin/pharmacokinetics , Aspirin/toxicity , Biological Availability , Male , Swimming , Toxicity Tests, Acute , Zebrafish
14.
Genes Cancer ; 12: 12-24, 2021.
Article in English | MEDLINE | ID: mdl-33884102

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal type of cancer. In this study, we undertook a pairwise comparison of gene expression pattern between tumor tissue and its matching adjacent normal tissue for 45 PDAC patients and identified 22 upregulated and 32 downregulated genes. PPI network revealed that fibronectin 1 and serpin peptidase inhibitor B5 were the most interconnected upregulated-nodes. Virtual screening identified bleomycin exhibited reasonably strong binding to both proteins. Effect of bleomycin on cell viability was examined against two PDAC cell lines, AsPC-1 and MIA PaCa-2. AsPC-1 did not respond to bleomycin, however, MIA PaCa-2 responded to bleomycin with an IC50 of 2.6 µM. This implicates that bleomycin could be repurposed for the treatment of PDAC, especially in combination with other chemotherapy agents. In vivo mouse xenograft studies and patient clinical trials are warranted to understand the functional mechanism of bleomycin towards PDAC and optimize its therapeutic efficacy. Furthermore, we will evaluate the antitumor activity of the other identified drugs in our future studies.

15.
J Drug Target ; 29(6): 660-668, 2021 07.
Article in English | MEDLINE | ID: mdl-33496213

ABSTRACT

Breast cancer is the most common cancer in women. Despite advances in screening women for genetic predisposition to breast cancer and risk stratification, a majority of women carriers remain undetected until they become affected. Thus, there is a need to develop a cost-effective, rapid, sensitive and non-invasive early-stage diagnostic method. Kinases are involved in all fundamental cellular processes and mutations in kinases have been reported as drivers of cancer. PPARγ is a ligand-activated transcription factor that plays important roles in cell proliferation and metabolism. However, the complete set of kinases modulated by PPARγ is still unknown. In this study, we identified human kinases that are potential PPARγ targets and evaluated their differential expression and gene pair correlations in human breast cancer patient dataset TCGA-BRCA. We further confirmed the findings in human breast cancer cell lines MCF7 and SK-BR-3 using a kinome array. We observed that gene pair correlations are lost in tumours as compared to healthy controls and could be used as a supplement strategy for diagnosis and prognosis of breast cancer.


Subject(s)
Breast Neoplasms/enzymology , PPAR gamma/metabolism , Phosphotransferases/metabolism , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Cell Line, Tumor , Datasets as Topic , Female , Humans , MCF-7 Cells , Mutation , Phosphotransferases/genetics , Prognosis
16.
Immun Inflamm Dis ; 9(1): 48-58, 2021 03.
Article in English | MEDLINE | ID: mdl-33332737

ABSTRACT

BACKGROUND: Although coronavirus disease 2019 (COVID-19) has been associated primarily with pneumonia, recent data show that the causative agent of COVID-19, the coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can infect a large number of vital organs beyond the lungs, such as the heart, kidneys, and the brain. Thus, there is evidence showing possible retrograde transmission of the virus from the olfactory epithelium to regions of the brain stem. METHODS: This is a literature review article. The research design method is an evidence-based rapid review. The present discourse aim is first to scrutinize and assess the available literature on COVID-19 repercussion on the central nervous system (CNS). Standard literature and database searches were implemented, gathered relevant material, and extracted information was then assessed. RESULTS: The angiotensin-converting enzyme 2 (ACE2) receptors being the receptor for the virus, the threat to the central nervous system is expected. Neurons and glial cells express ACE2 receptors in the CNS, and recent studies suggest that activated glial cells contribute to neuroinflammation and the devastating effects of SARS-CoV-2 infection on the CNS. The SARS-CoV-2-induced immune-mediated demyelinating disease, cerebrovascular damage, neurodegeneration, and depression are some of the neurological complications discussed here. CONCLUSION: This review correlates present clinical manifestations of COVID-19 patients with possible neurological consequences in the future, thus preparing healthcare providers for possible future consequences of COVID-19.


Subject(s)
COVID-19/complications , COVID-19/virology , Nervous System Diseases/etiology , SARS-CoV-2/physiology , Brain/metabolism , Brain/physiopathology , Brain/virology , COVID-19/immunology , Disease Susceptibility , Host-Pathogen Interactions , Humans , Nervous System/metabolism , Nervous System/physiopathology , Nervous System/virology , Nervous System Diseases/diagnosis
17.
Biomed Res Int ; 2020: 5764017, 2020.
Article in English | MEDLINE | ID: mdl-33381558

ABSTRACT

Sleep plays an important role in maintaining neuronal circuitry, signalling and helps maintain overall health and wellbeing. Sleep deprivation (SD) disturbs the circadian physiology and exerts a negative impact on brain and behavioural functions. SD impairs the cellular clearance of misfolded neurotoxin proteins like α-synuclein, amyloid-ß, and tau which are involved in major neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. In addition, SD is also shown to affect the glymphatic system, a glial-dependent metabolic waste clearance pathway, causing accumulation of misfolded faulty proteins in synaptic compartments resulting in cognitive decline. Also, SD affects the immunological and redox system resulting in neuroinflammation and oxidative stress. Hence, it is important to understand the molecular and biochemical alterations that are the causative factors leading to these pathophysiological effects on the neuronal system. This review is an attempt in this direction. It provides up-to-date information on the alterations in the key processes, pathways, and proteins that are negatively affected by SD and become reasons for neurological disorders over a prolonged period of time, if left unattended.


Subject(s)
Nervous System Diseases/complications , Neurons/metabolism , Sleep Deprivation/complications , Sleep/physiology , Alzheimer Disease/complications , Animals , Brain Mapping , Epilepsy/complications , Gene Expression Profiling , Gene Expression Regulation , Genomics , Glymphatic System/metabolism , Humans , Huntington Disease/complications , Immune System , Learning , Memory , Multiple Sclerosis/complications , Oxidation-Reduction , Oxidative Stress , Parkinson Disease/complications
18.
Int J Tryptophan Res ; 13: 1178646920977013, 2020.
Article in English | MEDLINE | ID: mdl-33354111

ABSTRACT

Tryptophan metabolism plays essential roles in both immunomodulation and cancer development. Indoleamine 2,3-dioxygenase, a rate-limiting enzyme in the metabolic pathway, is overexpressed in different types of cancer. To get a better understanding of the involvement of tryptophan metabolism in cancer development, we evaluated the expression and pairwise correlation of 62 genes in the metabolic pathway across 12 types of cancer. Only gene AOX1, encoding aldehyde oxidase 1, was ubiquitously downregulated, Furthermore, we observed that the 62 genes were widely and strongly correlated in normal controls, however, the gene pair correlations were significantly lost in tumor patients for all 12 types of cancer. This implicated that gene pair correlation coefficients of the tryptophan metabolic pathway could be applied as a prognostic and/or diagnostic biomarker for cancer.

19.
ACS Chem Neurosci ; 11(24): 4405-4415, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33261317

ABSTRACT

The overexpression of phosphodiesterase 4 (PDE4) enzymes is reported in several neurodegenerative diseases. PDE4 depletes cyclic 3'-5' adenosine monophosphate (cAMP) and, in turn, cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF), the key players in cognitive function. The present study was undertaken to investigate the mechanism behind the protective effects of roflumilast (ROF), a cAMP-specific PDE4 inhibitor, against quinolinic acid (QUIN)-induced neurotoxicity using human primary cortical neurons. Cytotoxicity was analyzed using an MTS assay. Reactive oxygen species (ROS) and mitochondrial membrane potential were measured by DCF-DA and JC-10 staining, respectively. Caspase 3/7 activity was measured using an ApoTox-Glo Triplex assay kit. cAMP was measured using an ELISA kit. The protein expression of CREB, BDNF, SAP-97, synaptophysin, synapsin-I, and PSD-95 was analyzed by the Western blotting technique. QUIN exposure down-regulated CREB, BDNF, and synaptic protein expression in neurons. Pretreatment with ROF increased the intracellular cAMP, mitochondrial membrane potential, and nicotinamide adenine dinucleotide (NAD+) content and decreased the ROS and caspase 3/7 levels in QUIN-exposed neurons. ROF up-regulated the expression of synapse proteins SAP-97, synaptophysin, synapsin-I, PSD-95, and CREB and BDNF, which indicates its potential role in memory. This study suggests for the first time that QUIN causes pre- and postsynaptic protein damage. We further demonstrate the restorative effects of ROF on the mitochondrial membrane potential and antiapoptotic properties in human neurons. These data encourage further investigations to reposition ROF in neurodegenerative diseases and their associated cognitive deficits.


Subject(s)
Phosphodiesterase 4 Inhibitors , Aminopyridines , Benzamides , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4 , Cyclopropanes , Humans , Neurons/metabolism , Neurotoxins , Oxidative Stress , Phosphodiesterase 4 Inhibitors/pharmacology , Quinolinic Acid , Synapses/metabolism
20.
Int J Mol Sci ; 21(23)2020 Dec 05.
Article in English | MEDLINE | ID: mdl-33291440

ABSTRACT

Sphingosine-1-phosphate (S1P) is a highly potent sphingolipid metabolite, which controls numerous physiological and pathological process via its extracellular and intracellular functions. The breast is mainly composed of epithelial cells (mammary gland) and adipocytes (stroma). Adipocytes play an important role in regulating the normal functions of the breast. Compared to the vast amount studies on breast epithelial cells, the functions of S1P in breast adipocytes are much less known. Thus, in the current study, we used human preadipocyte cell lines SGBS and mouse preadipocyte cell line 3T3-L1 as in vitro models to evaluate the effects of S1P on cell viability, differentiation, and gene expression in adipocytes. Our results showed that S1P increased cell viability in SGBS and 3T3-L1 preadipocytes but moderately reduced cell viability in differentiated SGBS and 3T3-L1 adipocytes. S1P was also shown to inhibit adipogenic differentiation of SGBS and 3T3-L1 at concentration higher than 1000 nM. Transcriptome analyses showed that S1P was more influential on gene expression in differentiated adipocytes. Furthermore, our network analysis in mature adipocytes showed that the upregulated DEGs (differentially expressed genes) were related to regulation of lipolysis, PPAR (peroxisome proliferator-activated receptor) signaling, alcoholism, and toll-like receptor signaling, whereas the downregulated DEGs were overrepresented in cytokine-cytokine receptor interaction, focal adhesion, starch and sucrose metabolism, and nuclear receptors pathways. Together previous studies on the functions of S1P in breast epithelial cells, the current study implicated that S1P may play a critical role in modulating the bidirectional regulation of adipocyte-extracellular matrix-epithelial cell axis and maintaining the normal physiological functions of the breast.


Subject(s)
Adipocytes/metabolism , Cell Differentiation , Gene Expression , Lysophospholipids/metabolism , Sphingosine/analogs & derivatives , 3T3-L1 Cells , Adipocytes/cytology , Adipogenesis/genetics , Animals , Biomarkers , Cell Differentiation/genetics , Cell Survival , Gene Expression Profiling , Gene Ontology , Humans , Mice , Signal Transduction , Sphingosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...