Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 679: 75-81, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37677980

ABSTRACT

Human skin is regularly exposed to ultraviolet (UV) rays from sunlight, leading to photoaging, which differs from intrinsic aging. Although the acute effects of UV exposure have been extensively studied, limited research has addressed the long-term consequences of chronic UV exposure. This study aimed to investigate the underlying causes of chronic photoaging. A questionnaire-based assessment of sunlight exposure was conducted among volunteers in their 20s and 50s, and the stratum corneum of their skin was analyzed for bioactive lipid content. Volunteers were categorized into low and high UV exposure groups based on the questionnaire scores. The analysis results revealed a significant increase in 9-hydroxyoctadecadienoic acid (9-HODE) levels in the skin of individuals in their 50s with high UV exposure. However, UV exposure did not affect 9-HODE levels in the skin of individuals in their 20s. In vitro experiments further indicated that 9-HODE contributes to chronic inflammation, pigmentary changes, and extracellular matrix alterations during photoaging. Specifically, 9-HODE stimulated cytokine production [interleukin-6 (IL6), IL8, and granulocyte-macrophage colony-stimulating factor (GM-CSF)] and reduced dickkopf-1 (DKK1) production in keratinocytes. In fibroblasts, 9-HODE stimulated matrix metalloproteinase-1 (MMP1) and MMP3 production while reducing collagen I (COL1) production. The expression of G2A, the receptor for 9-HODE, was also confirmed in fibroblasts, suggesting that 9-HODE exerts its effects via G2A, as observed in keratinocytes. Overall, these findings indicate that 9-HODE is a mediator of chronic photoaging and highlight its potential significance in photoaging prevention.

2.
Photochem Photobiol Sci ; 22(2): 345-356, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36271182

ABSTRACT

The effects of blue light on human body have attracted attention. The human skin in contact with the outside environment is often exposed to blue light, and the effects of this exposure remain to be fully determined. Therefore, in this study, we investigated the effect of blue light, at the intensity typically found in sunlight, on lipids in the skin from an oxidation perspective. Peroxide value (POV) and ultraweak photon emission (UPE) measurements were conducted to evaluate lipid oxidation. Our results confirmed that blue light irradiation induced lipid oxidation, similar to ultraviolet A (UVA) irradiation. Also, the effects of various reagents on the blue light-induced UPE were evaluated; however, the results differed from those of the DPPH radical-scavenging ability. We speculated that this is due to the difference in the evaluation principle; nevertheless, among reagents, hypotaurine not only showed a high antioxidant effect but was also more effective against blue light-induced oxidation than UVA. Based on the difference in the antioxidant effect of the lipid sample in this study, the oxidation reaction induced by blue light may be different from the UVA-induced reaction. Our study provides new insights into the effects of blue light on lipids in the human skin, thereby promoting research regarding photooxidation.


Subject(s)
Antioxidants , Light , Humans , Antioxidants/pharmacology , Photons , Skin/radiation effects , Ultraviolet Rays , Lipids
3.
Exp Dermatol ; 32(2): 146-153, 2023 02.
Article in English | MEDLINE | ID: mdl-36256509

ABSTRACT

The human skin is usually exposed to ultraviolet A (UVA) in the sunlight and experiences oxidative stress associated with skin disorders and aging. Although oxidative stress caused by UVA exposure is assumed to be dependent on skin colour, few studies have demonstrated this dependency. We investigated the effects of skin colour on UVA-induced oxidative stress using ultraweak photon emission (UPE) generated from the skin during oxidation processes. The UPE intensities of skin samples were detected using a photomultiplier tube every second without any labelling. We irradiated skin tissue of different colours with UVA and measured UPE over time. UVA-induced UPE could be detected from immediately after irradiation to 2 h after irradiation, indicating persistent oxidative stress. Skin lightness (L*) positively correlates with UPE intensity. Lighter-coloured skin exhibited more UVA-induced UPE, indicating higher oxidative stress. Additionally, oxidative stress persisted significantly more in lighter skin compared with darker skin. Skin tissues exhibited pigment darkening after UVA irradiation. Our results suggest that skin lightness affects oxidative stress induced by UV irradiation. Our study demonstrated the relationship between skin lightness and UVA-induced oxidative stress for the first time and offers new photodermatological insights into the human skin.


Subject(s)
Oxidative Stress , Skin , Humans , Skin/metabolism , Photons , Ultraviolet Rays , Aging
4.
Nat Commun ; 7: 12887, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27650679

ABSTRACT

Evolutionally conserved Wnt, Hedgehog (Hh) and Notch morphogen pathways play essential roles in the development, homeostasis and pathogenesis of multicellular organisms. Nevertheless, mechanisms that intracellularly coordinate these signal inputs remain poorly understood. Here we found that parafibromin, a component of the PAF complex, competitively interacts with ß-catenin and Gli1, thereby potentiating transactivation of Wnt- and Hh-target genes in a mutually exclusive manner. Parafibromin also binds to the Notch intracellular domain (NICD), enabling concerted activation of Wnt- and Notch-target genes. The transcriptional platform function of parafibromin is potentiated by tyrosine dephosphorylation, mediated by SHP2 phosphatase, while it is attenuated by tyrosine phosphorylation, mediated by PTK6 kinase. Consequently, acute loss of parafibromin in mice disorganizes the normal epithelial architecture of the intestine, which requires coordinated activation/inactivation of Wnt, Hh and/or Notch signalling. Parafibromin integrates and converts signals conveyed by these morphogen pathways into appropriate transcriptional outputs in a tyrosine phosphorylation/dephosphorylation-regulated manner.


Subject(s)
Hedgehog Proteins/metabolism , Receptors, Notch/metabolism , Tumor Suppressor Proteins/metabolism , Wnt Proteins/metabolism , Animals , Cell Line , Gene Deletion , Hedgehog Proteins/genetics , Mice , Plasmids , Receptors, Notch/genetics , Tumor Suppressor Proteins/genetics , Wnt Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...