Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 31(7): 107655, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32433964

ABSTRACT

Transcription factors (TFs) play a pivotal role in determining cell states, yet our understanding of the causative relationship between TFs and cell states is limited. Here, we systematically examine the state changes of human pluripotent embryonic stem cells (hESCs) by the large-scale manipulation of single TFs. We establish 2,135 hESC lines, representing three clones each of 714 doxycycline (Dox)-inducible genes including 481 TFs, and obtain 26,998 microscopic cell images and 2,174 transcriptome datasets-RNA sequencing (RNA-seq) or microarrays-48 h after the presence or absence of Dox. Interestingly, the expression of essentially all the genes, including genes located in heterochromatin regions, are perturbed by these TFs. TFs are also characterized by their ability to induce differentiation of hESCs into specific cell lineages. These analyses help to provide a way of classifying TFs and identifying specific sets of TFs for directing hESC differentiation into desired cell types.


Subject(s)
Human Embryonic Stem Cells/metabolism , Transcription Factors/metabolism , Cell Differentiation/physiology , Cell Line , Human Embryonic Stem Cells/cytology , Humans , Single-Cell Analysis/methods
2.
Biochem Biophys Res Commun ; 490(2): 296-301, 2017 08 19.
Article in English | MEDLINE | ID: mdl-28610919

ABSTRACT

Pluripotent human embryonic stem cells (hESCs) can differentiate into multiple cell lineages, thus, providing one of the best platforms to study molecular mechanisms during cell differentiation. Recently, we have reported rapid and efficient differentiation of hESCs into functional neurons by introducing a cocktail of synthetic mRNAs encoding five transcription factors (TFs): NEUROG1, NEUROG2, NEUROG3, NEUROD1, and NEUROD2. Here we further tested a possibility that even single transcription factors, when expressed ectopically, can differentiate hESCs into neurons. To this end, we established hESC lines in which each of these TFs can be overexpressed by the doxycycline-inducible piggyBac vector. The overexpression of any of these five TFs indeed caused a rapid and rather uniform differentiation of hESCs, which were identified as neurons based on their morphologies, qRT-PCR, and immunohistochemistry. Furthermore, calcium-imaging analyses and patch clamp recordings demonstrated that these differentiated cells are electrophysiologically functional. Interestingly, neural differentiations occurred despite the cell culture conditions that rather promote the maintenance of the undifferentiated state. These results indicate that over-expression of each of these five TFs can override the pluripotency-specific gene network and force hESCs to differentiate into neurons.


Subject(s)
Cell Differentiation/genetics , Human Embryonic Stem Cells/cytology , Neurons/cytology , Transcription Factors/genetics , Transcription Factors/metabolism , Transgenes/genetics , Cells, Cultured , Human Embryonic Stem Cells/metabolism , Humans , Neurons/metabolism
3.
NPJ Aging Mech Dis ; 3: 1, 2017.
Article in English | MEDLINE | ID: mdl-28649419

ABSTRACT

Dry eye disease is the most prevalent pathological condition in aging eyes. One potential therapeutic strategy is the transplantation of lacrimal glands, generated in vitro from pluripotent stem cells such as human embryonic stem cells, into patients. One of the preceding requirements is a method to differentiate human embryonic stem cells into lacrimal gland epithelium cells. As the first step for this approach, this study aims to identify a set of transcription factors whose overexpression can promote the differentiation of human embryonic stem cells into lacrimal gland epithelium-like cells. We performed microarray analyses of lacrimal glands and lacrimal glands-related organs obtained from mouse embryos and adults, and identified transcription factors enriched in lacrimal gland epithelium cells. We then transfected synthetic messenger RNAs encoding human orthologues of these transcription factors into human embryonic stem cells and examined whether the human embryonic stem cells differentiate into lacrimal gland epithelium-like cells by assessing cell morphology and marker gene expression. The microarray analysis of lacrimal glands tissues identified 16 transcription factors that were enriched in lacrimal gland epithelium cells. We focused on three of the transcription factors, because they are expressed in other glands such as salivary glands and are also known to be involved in the development of lacrimal glands. We tested the overexpression of various combinations of the three transcription factors and PAX6, which is an indispensable gene for lacrimal glands development, in human embryonic stem cells. Combining PAX6, SIX1, and FOXC1 caused significant changes in morphology, i.e., elongated cell shape and increased expression (both RNAs and proteins) of epithelial markers such as cytokeratin15, branching morphogenesis markers such as BARX2, and lacrimal glands markers such as aquaporin5 and lactoferrin. We identified a set of transcription factors enriched in lacrimal gland epithelium cells and demonstrated that the simultaneous overexpression of these transcription factors can differentiate human embryonic stem cells into lacrimal gland epithelium-like cells. This study suggests the possibility of lacrimal glands regeneration from human pluripotent stem cells.

4.
Stem Cells Int ; 2017: 7215010, 2017.
Article in English | MEDLINE | ID: mdl-28491098

ABSTRACT

Human pluripotent stem cells (hPSCs) have the capacity to differentiate into essentially all cell types in the body. Such differentiation can be directed to specific cell types by appropriate cell culture conditions or overexpressing lineage-defining transcription factors (TFs). Especially, for the activation of myogenic program, early studies have shown the effectiveness of enforced expression of TFs associated with myogenic differentiation, such as PAX7 and MYOD1. However, the efficiency of direct differentiation was rather low, most likely due to chromatin features unique to hPSCs, which hinder the access of TFs to genes involved in muscle differentiation. Indeed, recent studies have demonstrated that ectopic expression of epigenetic-modifying factors such as a histone demethylase and an ATP-dependent remodeling factor significantly enhances myogenic differentiation from hPSCs. In this article, we review the recent progress for in vitro generation of skeletal muscles from hPSCs through forced epigenetic and transcriptional manipulation.

5.
Sci Rep ; 7: 42367, 2017 02 13.
Article in English | MEDLINE | ID: mdl-28205555

ABSTRACT

Efficient differentiation of human pluripotent stem cells (hPSCs) into neurons is paramount for disease modeling, drug screening, and cell transplantation therapy in regenerative medicine. In this manuscript, we report the capability of five transcription factors (TFs) toward this aim: NEUROG1, NEUROG2, NEUROG3, NEUROD1, and NEUROD2. In contrast to previous methods that have shortcomings in their speed and efficiency, a cocktail of these TFs as synthetic mRNAs can differentiate hPSCs into neurons in 7 days, judged by calcium imaging and electrophysiology. They exhibit motor neuron phenotypes based on immunostaining. These results indicate the establishment of a novel method for rapid, efficient, and footprint-free differentiation of functional neurons from hPSCs.


Subject(s)
Cell Differentiation/genetics , Motor Neurons/cytology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Transcription Factors/genetics , Biomarkers/metabolism , Cell Shape , Humans , Ion Channels/metabolism , Kinetics , Motor Neurons/metabolism , Neurogenesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism
6.
In Vitro Cell Dev Biol Anim ; 53(2): 167-178, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27699653

ABSTRACT

Mouse zinc finger and SCAN domain containing 4 (Zscan4) proteins, which are encoded by multiple copies of Zscan4 genes, are expressed specifically in preimplantation embryos in vivo and embryonic stem (ES) cells in vitro. However, the expression patterns of mouse Zscan4 in vivo have been largely elusive. Here, we show that Zscan4 proteins are expressed in adult ovaries and testes. In ovaries, Zscan4 proteins were detected in germinal vesicle (GV) stage oocytes in antral follicles, indicating that Zscan4 genes are activated during the diplotene/dictyate stage in meiotic prophase I. Remarkably, Zscan4 showed different spatial localization patterns between two distinct GV oocytes, which can be distinguished by global chromatin organization-surrounded nucleolus (SN) and non-surrounded nucleolus (NSN). These spatiotemporal differences in Zscan4 localizations correlated with the transition of RNA polymerase II-mediated transcriptional status during GV oocyte maturation. In testes, Zscan4 proteins were detected in spermatocytes at late pachytene/diplotene stages and in Sertoli cells. These results suggest that Zscan4 may play critical roles during late meiotic prophase in both males and females.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Meiotic Prophase I , Oogenesis , Spermatogenesis , Transcription Factors/metabolism , Animals , Blastocyst/cytology , Blastocyst/metabolism , Chromosomal Proteins, Non-Histone/genetics , Female , Male , Meiotic Prophase I/genetics , Mice, Inbred C57BL , Oogenesis/genetics , Ovarian Follicle/cytology , Ovarian Follicle/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sertoli Cells/cytology , Sertoli Cells/metabolism , Spermatogenesis/genetics , Spermatozoa/cytology , Spermatozoa/metabolism , Testis/cytology , Testis/metabolism , Transcription Factors/genetics , Transcription, Genetic
7.
Development ; 143(20): 3674-3685, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27802135

ABSTRACT

Harnessing epigenetic regulation is crucial for the efficient and proper differentiation of pluripotent stem cells (PSCs) into desired cell types. Histone H3 lysine 27 trimethylation (H3K27me3) functions as a barrier against cell differentiation through the suppression of developmental gene expression in PSCs. Here, we have generated human PSC (hPSC) lines in which genome-wide reduction of H3K27me3 can be induced by ectopic expression of the catalytic domain of the histone demethylase JMJD3 (called JMJD3c). We found that transient, forced demethylation of H3K27me3 alone triggers the upregulation of mesoendodermal genes, even when the culture conditions for the hPSCs are not changed. Furthermore, transient and forced expression of JMJD3c followed by the forced expression of lineage-defining transcription factors enabled the hPSCs to activate tissue-specific genes directly. We have also shown that the introduction of JMJD3c facilitates the differentiation of hPSCs into functional hepatic cells and skeletal muscle cells. These results suggest the utility of the direct manipulation of epigenomes for generating desired cell types from hPSCs for cell transplantation therapy and platforms for drug screenings.


Subject(s)
Histones/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Apoptosis/genetics , Apoptosis/physiology , Cell Differentiation/genetics , Cell Differentiation/physiology , Chromatin Immunoprecipitation , Ectopic Gene Expression/genetics , Ectopic Gene Expression/physiology , Epigenesis, Genetic/genetics , Hepatocytes/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Immunoblotting , Jumonji Domain-Containing Histone Demethylases/genetics , PAX3 Transcription Factor/genetics , PAX3 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Bioinformation ; 6(2): 86-90, 2011 Mar 26.
Article in English | MEDLINE | ID: mdl-21544172

ABSTRACT

Informatics for Integrating Biology and the Bedside (i2b2) is a database system to facilitate sharing and reuse of clinical patients' data collected in individual hospitals. The i2b2 provides an ontology based object-oriented database system with highly simple and flexible database schema which enables us to integrate clinical patients' data from different laboratories and different hospitals. 392 patients' data including carcinoma and non-carcinoma specimens from cancer patients are transported from the Integrated Clinical Omics Database (iCOD) to the i2b2 database for a feasibility study to check applicability of i2b2 ontology and database schema on Japanese clinical patients' data. No modification is required for the i2b2 data model to deal with Japanese characters. Some modification of ontology is required to integrate biomedical information extracted from the cancer patients' data. We believe that the i2b2 system will be practical infrastructure to integrate Japanese clinical databases if appropriate disease ontology for Japanese patients is provided.

9.
Exp Cell Res ; 316(17): 2871-82, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20599946

ABSTRACT

Prolyl-hydroxylase PHDs are the key regulators of hypoxia-inducible factor (HIF) stability. PHD3 has been shown to form a large complex under hypoxic conditions. While attempting to characterize the complex by determining its components, we identified human PRP19. hPRP19 is a multi-functional protein that plays a role in splicing, ubiquitination, and cell growth. Here, we report that PHD3 efficiently forms a complex with hPRP19 under hypoxic conditions and prevents cell death under prolonged hypoxic conditions. hPRP19 interacts with PHD3 via its C-terminal WD40 region, and the interaction is enhanced under hypoxic conditions through the utilization of the N-terminal coiled-coil domain. Cell death observed under prolonged hypoxic conditions is suppressed by the forced expression of hPRP19 in PC12 and HEK293T cells. In contrast, hPRP19 silencing by siRNA increased the caspase activity and enhanced cell death under hypoxic conditions in HeLa cells. Further, silencing of both PHD3 and hPRP19 recovers the cell death induced by hPRP19 single siRNA. Taken together, the results of our study indicate that hPRP19 interacts with PHD3 to suppress the cell death under hypoxic conditions by limiting the function of PHD3 which leads to caspase activation.


Subject(s)
Cell Death , DNA Repair Enzymes/metabolism , Dioxygenases/metabolism , Hypoxia/etiology , Nuclear Proteins/metabolism , Animals , Caspases/metabolism , Cell Line , Dioxygenases/antagonists & inhibitors , Humans , Hypoxia/pathology , Hypoxia-Inducible Factor-Proline Dioxygenases , PC12 Cells , Procollagen-Proline Dioxygenase/metabolism , Protein Binding , RNA Splicing Factors , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...