ABSTRACT
Diabetic wounds represent a significant healthcare burden and are characterized by impaired wound healing due to increased oxidative stress and persistent inflammation. We have shown that CNP-miR146a synthesized by the conjugation of cerium oxide nanoparticles (CNP) to microRNA (miR)-146a improves diabetic wound healing. CNP are divalent metal oxides that act as free radical scavenger, while miR146a inhibits the pro-inflammatory NFκB pathway, so CNP-miR146a has a synergistic role in modulating both oxidative stress and inflammation. In this study, we define the mechanism(s) by which CNP-miR146a improves diabetic wound healing by examining immunohistochemical and gene expression analysis of markers of inflammation, oxidative stress, fibrosis, and angiogenesis. We have found that intradermal injection of CNP-miR146a increases wound collagen, enhances angiogenesis, and lowers inflammation and oxidative stress, ultimately promoting faster closure of diabetic wounds.
Subject(s)
Cerium , Diabetes Mellitus , MicroRNAs , Nanoparticles , Cerium/chemistry , Cerium/pharmacology , Humans , MicroRNAs/metabolism , Nanoparticles/chemistry , Wound HealingABSTRACT
Exposure to ultraviolet radiation is a major contributor to premature skin aging and carcinogenesis, which is mainly driven by overproduction of reactive oxygen species (ROS). There is growing interest for research on new strategies that address photoaging prevention, such as the use of nanomaterials. Cerium oxide nanoparticles (nanoceria) show enzyme-like activity in scavenging ROS. Herein, our goal was to study whether under ultraviolet A rays (UVA)-induced oxidative redox imbalance, a low dose of nanoceria induces protective effects on cell survival, migration, and proliferation. Fibroblasts cells (L929) were pretreated with nanoceria (100 nM) and exposed to UVA radiation. Pretreatment of cells with nanoceria showed negligible cytotoxicity and protected cells from UVA-induced death. Nanoceria also inhibited ROS production immediately after irradiation and for up to 48 h and restored the superoxide dismutase (SOD) activity and GSH level. Additionally, the nanoceria pretreatment prevented apoptosis by decreasing Caspase 3/7 levels and the loss of mitochondrial membrane potential. Nanoceria significantly improved the cell survival migration and increased proliferation, over a 5 days period, as compared with UVA-irradiated cells, in wound healing assay. Furthermore, it was observed that nanoceria decreased cellular aging and ERK 1/2 phosphorylation. Our study suggests that nanoceria might be a potential ally to endogenous, antioxidant enzymes, and enhancing the redox potentials to fight against UVA-induced photodamage and consequently modulating the cells survival, migration, and proliferation.
ABSTRACT
The Ultraviolet-B radiation (UVB) might induce cellular redox imbalance which plays an important role in the development of skin disorders. Thus, the search for photochemoprotective alternatives with antioxidant efficacy would be a safe aspect towards prevention of skin diseases. Cerium oxide nanoparticles (CNPs) have antioxidant properties, that are mostly related to CNPs catalase and superoxide dismutase (SOD)-like antioxidative mimetic activity. Considering that, we investigated whether CNPs induce photochemoprotection against UVB-induced cellular damages on L929 fibroblasts. Our results showed that CNPs prevented UVB mediated L929 cell oxidative damage by reestablishing the oxidative balance through ameliorating the reactive oxygen species (ROS) level and enhancing the antioxidant enzyme activities.