Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 3376, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38336912

ABSTRACT

KPNA1 is a mediator of nucleocytoplasmic transport that is abundantly expressed in the mammalian brain and regulates neuronal differentiation and synaptic function. De novo mutations in Kpna1 have been identified using genome-wide association studies in humans with schizophrenia; however, it remains unclear how KPNA1 contributes to schizophrenia pathogenesis. Recent studies have suggested a complex combination of genetic and environmental factors that are closely related to psychiatric disorders. Here, we found that subchronic administration of phencyclidine, a psychotropic drug, induced vulnerability and behavioral abnormalities consistent with the symptoms of schizophrenia in Kpna1-deficient mice. Microarray assessment revealed that the expression levels of dopamine d1/d2 receptors, an RNA editing enzyme, and a cytoplasmic dynein component were significantly altered in the nucleus accumbens brain region in a gene-environment (G × E) interaction-dependent manner. Our findings demonstrate that Kpna1-deficient mice may be useful as a G × E interaction mouse model for psychiatric disorders and for further investigation into the pathogenesis of such diseases and disorders.


Subject(s)
Schizophrenia , Humans , Mice , Animals , Schizophrenia/chemically induced , Schizophrenia/genetics , Gene-Environment Interaction , Genome-Wide Association Study , Psychotropic Drugs/pharmacology , Phencyclidine/pharmacology , Nucleus Accumbens/metabolism , Mammals/metabolism , alpha Karyopherins/genetics , alpha Karyopherins/metabolism
2.
Psychopharmacology (Berl) ; 241(1): 89-96, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37792024

ABSTRACT

RATIONALE: Clozapine N-oxide (CNO) has been developed as a ligand to selectively activate designer receptors exclusively activated by designer drugs (DREADDs). However, previous studies have revealed that peripherally injected CNO is reverse-metabolized into clozapine, which, in addition to activating DREADDs, acts as an antagonist at various neurotransmitter receptors, suggesting potential off-target effects of CNO on animal physiology and behaviors. Recently, second-generation DREADD agonists compound 21 (C21) and JHU37160 (J60) have been developed, but their off-target effects are not fully understood. OBJECTIVES: The present studies assessed the effect of novel DREADD ligands on reward-seeking behavior. METHODS: We first tested the possible effect of acute i.p. injection of low-to-moderate (0.1, 0.3, 1, 3 mg/kg) of CNO, C21, and J60 on motivated reward-seeking behavior in wild-type mice. We then examined whether a high dose (10 mg/kg) of these drugs might be able to alter responding. RESULTS: Low-to-moderate doses of all drugs and a high dose of CNO or C21 did not alter operant lick responding for a reward under a progressive ratio schedule of reinforcement, in which the number of operant lick responses to obtain a reward increases after each reward collection. However, high-dose J60 resulted in a total lack of responding that was later observed in an open field arena to be due to a sedative effect. CONCLUSIONS: This study provides definitive evidence that commonly used doses of CNO, C21, and J60 have negligible off-target effects on motivated reward-seeking but urges caution when using high doses of J60 due to sedative effects.


Subject(s)
Clozapine , Designer Drugs , Mice , Animals , Clozapine/pharmacology , Reward , Designer Drugs/pharmacology
3.
Mol Brain ; 16(1): 59, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37438826

ABSTRACT

Schizophrenia is a psychiatric disorder that affects around 1% of the population in widespread populations, with severe cases leading to long-term hospitalization and necessitation of lifelong treatment. Recent studies on schizophrenia have highlighted the involvement of inflammatory and immunoregulatory mechanisms with the onset of symptoms, and the usage of anti-inflammatory treatments are being tested against periods of rapid psychosis. In the central nervous system, microglia are the innate immune population which are activated in response to a wide range of physical and psychological stress factors and produce proinflammatory mediators such as cytokines. Microglial activation and neuroinflammation has been associated to numerous psychiatric disorders including schizophrenia, especially during psychotic episodes. Thus, novel treatments which dampen microglial activation may be of great relevance in the treatment of psychiatric disorders. Fingolimod (FTY720) is a drug used as an immunosuppressive treatment to multiple sclerosis. Recent clinical trials have focused on FTY720 as a treatment for the behavioral symptoms in schizophrenia. However, the mechanisms of Fingolimod in treating the symptoms of schizophrenia are not clear. In this study we use a recently developed neuroinflammatory psychosis model in mice: cuprizone short-term exposure, to investigate the effects of FTY720 administration. FTY720 administration was able to completely alleviate methamphetamine hypersensitivity caused by cuprizone exposure. Moreover, administration of FTY720 improved multiple measures of neuroinflammation (microglial activation, cytokine production, and leucocyte infiltration). In conclusion, our results highlight the future use of FTY720 as a direct anti-inflammatory treatment against microglial activation and psychosis.


Subject(s)
Fingolimod Hydrochloride , Psychotic Disorders , Animals , Mice , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/therapeutic use , Cuprizone , Microglia , Neuroinflammatory Diseases
4.
Commun Biol ; 6(1): 665, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37353538

ABSTRACT

Cellular senescence, a state of irreversible cell-cycle arrest caused by a variety of cellular stresses, is critically involved in age-related tissue dysfunction in various organs. However, the features of cells in the central nervous system that undergo senescence and their role in neural impairment are not well understood as yet. Here, through comprehensive investigations utilising single-cell transcriptome analysis and various mouse models, we show that microglia, particularly in the white matter, undergo cellular senescence in the brain and spinal cord during ageing and in disease models involving demyelination. Microglial senescence is predominantly detected in disease-associated microglia, which appear in ageing and neurodegenerative diseases. We also find that commensal bacteria promote the accumulation of senescent microglia and disease-associated microglia during ageing. Furthermore, knockout of p16INK4a, a key senescence inducer, ameliorates the neuroinflammatory phenotype in damaged spinal cords in mice. These results advance our understanding of the role of cellular senescence in the central nervous system and open up possibilities for the treatment of age-related neural disorders.


Subject(s)
Microglia , White Matter , Mice , Animals , Aging/physiology , Cellular Senescence/physiology , Phenotype
5.
Front Neurosci ; 16: 905991, 2022.
Article in English | MEDLINE | ID: mdl-35844217

ABSTRACT

Importin α3 (Gene: Kpna3, the ortholog of human Importin α4) is a member of the importin α family and participates in nucleocytoplasmic transport by forming trimeric complexes between cargo proteins and importin ß1. Evidence from human studies has indicated that single nucleotide polymorphisms (SNP) in the KPNA3 gene are associated with the occurrence of several psychiatric disorders accompanied by abnormal reward-related behavior, including schizophrenia, major depression, and substance addiction. However, the precise roles of importin α3 in controlling reward processing and motivation are still unclear. In this study, we evaluated the behavioral effects of Kpna3 knockout (KO) in mice on performance in touchscreen operant chamber-based tasks evaluating simple (fixed-ratio) and effortful (progressive-ratio) reward-seeking behaviors. While Kpna3 KO mice showed no significant differences in operant reward learning on a fixed-ratio schedule, they demonstrated significantly increased motivation (increased break point) to instrumentally respond for sucrose on a progressive-ratio schedule. We additionally measured the number of c-Fos-positive cells, a marker of neural activity, in 20 regions of the brain and identified a network of brain regions based on their interregional correlation coefficients. Network and graph-theoretic analyses suggested that Kpna3 deficiency enhanced overall interregional functional connectivity. These findings suggest the importance of Kpna3 in motivational control and indicate that Kpna3 KO mice may be an attractive line for modeling motivational abnormalities associated with several psychiatric disorders.

6.
PLoS One ; 16(11): e0258364, 2021.
Article in English | MEDLINE | ID: mdl-34767585

ABSTRACT

Importin α1/KPNA1 is a member of the Importin α family widely present in the mammalian brain and has been characterized as a regulator of neuronal differentiation, synaptic functionality, and anxiety-like behavior. In humans, a de novo mutation of the KPNA1 (human Importin α5) gene has been linked with schizophrenia; however, the precise roles of KPNA1 in disorder-related behaviors are still unknown. Moreover, as recent studies have highlighted the importance of gene-environment interactions in the development of psychiatric disorders, we investigated the effects of Kpna1 deletion and social isolation stress, a paradigm that models social stress factors found in human patients, on psychiatric disorder-related behaviors in mice. Through assessment in a behavioral battery, we found that Kpna1 knockout resulted in the following behavioral phenotype: (1) decreased anxiety-like behavior in an elevated plus maze test, (2) short term memory deficits in novel object recognition test (3) impaired sensorimotor gating in a prepulse inhibition test. Importantly, exposure to social isolation stress resulted in additional behavioral abnormalities where isolated Kpna1 knockout mice exhibited: (1) impaired aversive learning and/or memory in the inhibitory avoidance test, as well as (2) increased depression-like behavior in the forced swim test. Furthermore, we investigated whether mice showed alterations in plasma levels of stress-associated signal molecules (corticosterone, cytokines, hormones, receptors), and found that Kpna1 knockout significantly altered levels of corticosterone and LIX (CXCL5). Moreover, significant decreases in the level of prolactin were found in all groups except for group-housed wild type mice. Our findings demonstrate that Kpna1 deletion can trigger widespread behavioral abnormalities associated with psychiatric disorders, some of which were further exacerbated by exposure to adolescent social isolation. The use of Kpna1 knockout mice as a model for psychiatric disorders may show promise for further investigation of gene-environment interactions involved in the pathogenesis of psychiatric disorders.


Subject(s)
Anxiety/genetics , Behavior, Animal , Depression/genetics , Schizophrenia/genetics , Social Isolation/psychology , alpha Karyopherins/genetics , Animals , Anxiety/blood , Chemokine CXCL5/blood , Corticosterone/blood , Depression/blood , Disease Models, Animal , Female , Learning , Male , Memory, Short-Term , Mice , Mice, Inbred C57BL , Mice, Knockout , Prolactin/blood , Schizophrenia/blood , Signal Transduction/genetics
8.
J Lipid Res ; 61(4): 570-579, 2020 04.
Article in English | MEDLINE | ID: mdl-32102801

ABSTRACT

Steroids that contain a 3-hydroxyl group (3-OH steroids) are widely distributed in nature. During analysis with ESI-MS, they easily become dehydrated while in the protonated form, resulting in the production of several precursor ions and leading to low sensitivity of detection. To address this analytical challenge, here, we developed a method for the quantitation of 3-OH steroids by LC-MS/MS coupled with post-column addition of lithium (Li) ions to the mobile phase. The Li ion has a high affinity for the keto group of steroids, stabilizing their structures during ionization and permitting detection of analytes exclusively as the lithiated form. This not only improved the intensities of the precursor ions, but also promoted the formation of typical lithiated fragment ions. This improvement made the quantitation by multiple reaction monitoring more sensitive and reliable, as evidenced by 1.53-188 times enhanced detection sensitivity of 13 steroids that contained at least one keto and two hydroxyl groups or one keto and one 5-olefinic double bond, among 16 different 3-OH steroids. We deployed our newly developed method for profiling steroids in mouse brain tissue and identified six steroids in one tissue sample. Among these, 16-hydroxyestrone, tetrahydrocorticosterone, and 17α-hydroxypregnenolone were detected for the first time in the mouse brain. In summary, the method described here enables the detection of lithiated steroids by LC-MS/MS, including three 3-OH steroids not previously reported in the mouse brain. We anticipate that this new method may allow the determination of 3-OH steroids in different brain regions.


Subject(s)
Chromatography, High Pressure Liquid/methods , Lithium/chemistry , Steroids/analysis , Steroids/chemistry , Tandem Mass Spectrometry/methods , Animals , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...