Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Am J Hematol ; 99(6): 1103-1107, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38572662

ABSTRACT

Hyperleukocytosis is an emergency of acute leukemia leading to blood hyperviscosity, potentially resulting in life-threatening microvascular obstruction, or leukostasis. Due to the high number of red cells in the circulation, hematocrit/hemoglobin levels (Hct/Hgb) are major drivers of blood viscosity, but how Hct/Hgb mediates hyperviscosity in acute leukemia remains unknown. In vivo hemorheological studies are difficult to conduct and interpret due to issues related to visualizing and manipulating the microvasculature. To that end, a multi-vessel microfluidic device recapitulating the size-scale and geometry of the microvasculature was designed to investigate how Hct/Hgb interacts with acute leukemia to induce "in vitro" leukostasis. Using patient samples and cell lines, the degree of leukostasis was different among leukemia immunophenotypes with respect to white blood cell (WBC) count and Hct/Hgb. Among lymphoid immunophenotypes, severe anemia is protective against in vitro leukostasis and Hct/Hgb thresholds became apparent above which in vitro leukostasis significantly increased, to a greater extent with B-cell acute lymphoblastic leukemia (ALL) versus T-cell ALL. In vitro leukostasis in acute myeloid leukemia was primarily driven by WBC with little interaction with Hct/Hgb. This sets the stage for prospective clinical studies assessing how red cell transfusion may affect leukostasis risk in immunophenotypically different acute leukemia patients.


Subject(s)
Blood Viscosity , Erythrocyte Transfusion , Humans , Microvessels , Leukostasis/etiology , Hematocrit , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/blood , Female , Male , Hemoglobins/analysis
2.
Respirol Case Rep ; 12(1): e01266, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38074921

ABSTRACT

The efficacy and safety of the combination of biologic therapies remain unclear with an ineffective and insufficient single biologic for managing asthma. Herein, we report two cases using dual biologics for severe asthma and atopic dermatitis. A 52-year-old male patient who received dupilumab and mepolizumab, benralizumab, or tezepelumab, followed by bronchial thermoplasty, and a 41-year-old male patient who received dupilumab and omalizumab, both experienced improved asthma and atopic dermatitis. To date, 38 cases are using dual biologics for severe asthma. The success rate was 84%, with no major adverse effects. We report the first case of severe asthma receiving dual biologics with tezepelumab and furthermore bronchial thermoplasty, and comprehensive literature review on dual biologics. Dual biologics may be an effective treatment method for severe asthma, requiring further investigation.

4.
Nat Commun ; 14(1): 1638, 2023 04 04.
Article in English | MEDLINE | ID: mdl-37015925

ABSTRACT

The pathogenesis of multi-organ dysfunction associated with severe acute SARS-CoV-2 infection remains poorly understood. Endothelial damage and microvascular thrombosis have been identified as drivers of COVID-19 severity, yet the mechanisms underlying these processes remain elusive. Here we show alterations in fluid shear stress-responsive pathways in critically ill COVID-19 adults as compared to non-COVID critically ill adults using a multiomics approach. Mechanistic in-vitro studies, using microvasculature-on-chip devices, reveal that plasma from critically ill COVID-19 adults induces fibrinogen-dependent red blood cell aggregation that mechanically damages the microvascular glycocalyx. This mechanism appears unique to COVID-19, as plasma from non-COVID sepsis patients demonstrates greater red blood cell membrane stiffness but induces less significant alterations in overall blood rheology. Multiomics analyses in pediatric patients with acute COVID-19 or the post-infectious multi-inflammatory syndrome in children (MIS-C) demonstrate little overlap in plasma cytokine and metabolite changes compared to adult COVID-19 patients. Instead, pediatric acute COVID-19 and MIS-C patients show alterations strongly associated with cytokine upregulation. These findings link high fibrinogen and red blood cell aggregation with endotheliopathy in adult COVID-19 patients and highlight differences in the key mediators of pathogenesis between adult and pediatric populations.


Subject(s)
COVID-19 , Humans , Child , Adult , SARS-CoV-2 , Critical Illness , Cytokines , Fibrinogen
5.
Platelets ; 34(1): 2185453, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36872890

ABSTRACT

Currently, point-of-care assays for human platelet function and coagulation are used to assess bleeding risks and drug testing, but they lack intact endothelium, a critical component of the human vascular system. Within these assays, the assessment of bleeding risk is typically indicated by the lack of or reduced platelet function and coagulation without true evaluation of hemostasis. Hemostasis is defined as the cessation of bleeding. Additionally, animal models of hemostasis also, by definition, lack human endothelium, which may limit their clinical relevance. This review discusses the current state-of-the-art of hemostasis-on-a-chip, specifically, human cell-based microfluidic models that incorporate endothelial cells, which function as physiologically relevant in vitro models of bleeding. These assays recapitulate the entire process of vascular injury, bleeding, and hemostasis, and provide real-time, direct observation, thereby serving as research-enabling tools that enhance our understanding of hemostasis and also as novel drug discovery platforms.


The human body's response to stop bleeding after a vascular injury involves a complex but finely tuned cascade of interactions between the blood, the blood vessel wall, and the physical flow of the blood. Accordingly, in vitro models that incorporate those aspects that occur in vivo are highly needed for research and clinical purposes. Here, we review the state of the art of these technologies, hemostasis-on-a-chip devices that aim to achieve those goals. These physiologically relevant "microchips" mimic the bleeding process as well as the cessation thereof, and can be leveraged as research-enabling tools, platforms for drug discovery, and clinical testing.


Subject(s)
Endothelial Cells , Microfluidics , Animals , Humans , Hemorrhage , Blood Coagulation , Endothelium , Lab-On-A-Chip Devices
6.
Intern Med ; 62(8): 1219-1222, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36725035

ABSTRACT

Omalizumab can cause hypersensitivity reactions. We herein report the first case of an 18-year-old woman with refractory cough-predominant asthma that correlated with allergic reactions caused by omalizumab and the coronavirus disease 2019 (COVID-19) vaccine. The patient developed angioedema after taking omalizumab. She had previously experienced intense coughing immediately after receiving a COVID-19 vaccine. A skin prick test was positive for polysorbate 20, which was probably the cause of the allergic reactions to omalizumab and the COVID-19 vaccine. Clinicians should check for an allergic reaction, irrespective of its intensity, triggered by polysorbate and be careful when prescribing biologics to patients in order to avoid allergic reactions.


Subject(s)
Angioedema , Anti-Allergic Agents , COVID-19 Vaccines , COVID-19 , Omalizumab , Adolescent , Female , Humans , Angioedema/chemically induced , Anti-Allergic Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Coronavirus , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Omalizumab/adverse effects , Polysorbates/therapeutic use
7.
J Pediatr Gastroenterol Nutr ; 76(4): 483-488, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36599151

ABSTRACT

OBJECTIVES: Recently, a genetic risk for chronic pancreatitis (CP) was found to be conferred by pathogenic variants in the transient receptor potential cation channel, subfamily V, member 6 ( TRPV6 ). Interestingly, 20%-57% of patients with functionally defective TRPV6 variants have other susceptibility genes such as cationic trypsinogen, serine protease inhibitor Kazal type 1, chymotrypsin C, cystic fibrosis transmembrane conductance regulator, and carboxypeptidase A1. In this study, we focused on pediatric patients with acute recurrent pancreatitis or CP with at least 1 variant in these 5 genes and investigated the presence of coexisting TRPV6 mutations. METHODS: Ninety Japanese pediatric patients (median age at first onset, 8.0 years) who had at least 1 variant of these 5 genes were enrolled in this study. DNA samples were extracted for analysis from peripheral blood leukocytes. Coding regions of TRPV6 were screened by Sanger sequencing. RESULTS: Regardless of functional defects or non-defects in TRPV6 variants, 14 of the 90 patients (15.6%) were trans-heterozygous for TRPV6 variants [p.A18S (n = 3), p.C197R (n = 3), p.I223T (n = 3), p.D324N (n = 4), p.M418V (n = 3), p.V540F (n = 1), p.A606T (n = 1), and p.M721T (n = 3)] and the 5 susceptibility genes noted above. Of these variants, p.D324N, p.V540F, and p.A606T are associated with pancreatitis. Three patients had the ancestral haplotype [p.C197R + p.M418V + p.M721T]. CONCLUSIONS: Overall, 4 of 90 patients (4.4%) had the coexistence of clearly pathogenic TRPV6 variants with pancreatitis-associated variants. The cumulative accumulation of these genetic factors may contribute to the development of pancreatitis at a young age.


Subject(s)
Pancreatitis, Chronic , Humans , Child , Pancreatitis, Chronic/complications , Pancreatitis, Chronic/genetics , Pancreatitis, Chronic/pathology , Mutation , Trypsin/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Carrier Proteins/genetics , Trypsin Inhibitor, Kazal Pancreatic/genetics , Genetic Predisposition to Disease , Calcium Channels/genetics , TRPV Cation Channels/genetics
8.
Blood Adv ; 7(1): 60-72, 2023 01 10.
Article in English | MEDLINE | ID: mdl-35849711

ABSTRACT

Prior reports indicate that the convex membrane curvature of phosphatidylserine (PS)-containing vesicles enhances formation of binding sites for factor Va and lactadherin. Yet, the relationship of convex curvature to localization of these proteins on cells remains unknown. We developed a membrane topology model, using phospholipid bilayers supported by nano-etched silica substrates, to further explore the relationship between curvature and localization of coagulation proteins. Ridge convexity corresponded to maximal curvature of physiologic membranes (radii of 10 or 30 nm) and the troughs had a variable concave curvature. The benchmark PS probe lactadherin exhibited strong differential binding to the ridges, on membranes with 4% to 15% PS. Factor Va, with a PS-binding motif homologous to lactadherin, also bound selectively to the ridges. Bound factor Va supported coincident binding of factor Xa, localizing prothrombinase complexes to the ridges. Endothelial cells responded to prothrombotic stressors and stimuli (staurosporine, tumor necrosis factor-α [TNF- α]) by retracting cell margins and forming filaments and filopodia. These had a high positive curvature similar to supported membrane ridges and selectively bound lactadherin. Likewise, the retraction filaments and filopodia bound factor Va and supported assembly of prothrombinase, whereas the cell body did not. The perfusion of plasma over TNF-α-stimulated endothelia in culture dishes and engineered 3-dimensional microvessels led to fibrin deposition at cell margins, inhibited by lactadherin, without clotting of bulk plasma. Our results indicate that stressed or stimulated endothelial cells support prothrombinase activity localized to convex topological features at cell margins. These findings may relate to perivascular fibrin deposition in sepsis and inflammation.


Subject(s)
Phosphatidylserines , Thromboplastin , Thromboplastin/metabolism , Phosphatidylserines/metabolism , Endothelial Cells/metabolism , Factor Va/chemistry , Factor Va/metabolism , Pseudopodia/metabolism , Fibrin
9.
Methods Mol Biol ; 2373: 159-175, 2022.
Article in English | MEDLINE | ID: mdl-34520012

ABSTRACT

This chapter describes the development of a poly(dimethylsiloxane)-based microfluidic platform that is able to holistically assess and visualize the entire hemostatic process in vitro. The microfluidic platform includes (1) integration of intact endothelium, (2) physiological flow conditions, (3) controlled mechanical injury to study global hemostatic potential of a patient's whole blood samples in a microvascular model and for dissecting pathophysiologic mechanisms of diseases.


Subject(s)
Hemostasis , Hemorrhage , Hemostatics , Humans , Microfluidics
10.
Biomaterials ; 274: 120828, 2021 07.
Article in English | MEDLINE | ID: mdl-33964792

ABSTRACT

Physiological processes such as blood clotting and wound healing as well as pathologies such as fibroses and musculoskeletal contractures, all involve biological materials composed of a contracting cellular population within a fibrous matrix, yet how the microscale interactions among the cells and the matrix lead to the resultant emergent behavior at the macroscale tissue level remains poorly understood. Platelets, the anucleate cell fragments that do not divide nor synthesize extracellular matrix, represent an ideal model to study such systems. During blood clot contraction, microscopic platelets actively pull fibers to shrink the macroscale clot to less than 10% of its initial volume. We discovered that platelets utilize a new emergent behavior, asynchrono-mechanical amplification, to enhanced volumetric material contraction and to magnify contractile forces. This behavior is triggered by the heterogeneity in the timing of a population of actuators. This result indicates that cell heterogeneity, often attributed to stochastic cell-to-cell variability, can carry an essential biophysical function, thereby highlighting the importance of considering 4 dimensions (space + time) in cell-matrix biomaterials. This concept of amplification via heterogeneity can be harnessed to increase mechanical efficiency in diverse systems including implantable biomaterials, swarm robotics, and active polymer composites.


Subject(s)
Blood Platelets , Thrombosis , Blood Coagulation , Fibrin , Humans , Wound Healing
13.
PLoS One ; 15(11): e0241869, 2020.
Article in English | MEDLINE | ID: mdl-33166338

ABSTRACT

Chronic enteropathy associated with SLCO2A1 gene (CEAS) is caused by loss-of-function mutations in SLCO2A1, which encodes a prostaglandin (PG) transporter. In this study, we report a sibling case of CEAS with a novel pathogenic variant of the SLCO2A1 gene. Compound heterozygous variants in SLCO2A1 were identified in an 8-year-old boy and 12-year-old girl, and multiple chronic nonspecific ulcers were observed in the patients using capsule endoscopy. The splice site mutation (c.940 + 1G>A) of the paternal allele was previously reported to be pathogenic, whereas the missense variant (c.1688T>C) of the maternal allele was novel and had not yet been reported. The affected residue (p.Leu563Pro) is located in the 11th transmembrane domain (helix 11) of SLCO2A1. Because SLCO2A1 mediates the uptake and clearance of PGs, the urinary PG metabolites were measured by liquid chromatography coupled to tandem mass spectrometry. The urinary tetranor-prostaglandin E metabolite levels in the patients were significantly higher than those in unaffected individuals. We established cell lines with doxycycline-inducible expression of wild type SLCO2A1 (WT-SLCO2A1) and the L563P mutant. Immunofluorescence staining showed that WT-SLCO2A1 and the L563P mutant were dominantly expressed on the plasma membranes of these cells. Cells expressing WT-SLCO2A1 exhibited time- and dose-dependent uptake of PGE2, while the mutant did not show any uptake activity. Residue L563 is very close to the putative substrate-binding site in SLCO2A1, R561 in helix 11. However, in a molecular model of SLCO2A1, the side chain of L563 projected outside of helix 11, indicating that L563 is likely not directly involved in substrate binding. Instead, the substitution of Pro may twist the helix and impair the transporter function. In summary, we identified a novel pathogenic variant of SLCO2A1 that caused loss-of-function and induced CEAS.


Subject(s)
Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Prostaglandins/urine , Stomach Ulcer/diagnostic imaging , Capsule Endoscopy , Cell Line , Cell Membrane/metabolism , Child , Female , Heterozygote , Humans , Male , Mutation , Organic Anion Transporters/chemistry , Pedigree , Protein Domains , Stomach Ulcer/genetics , Stomach Ulcer/urine
14.
Platelets ; 31(5): 570-579, 2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32106734

ABSTRACT

As the anucleate cells responsible for hemostasis and thrombosis, platelets are exposed to a myriad of biophysical and biochemical stimuli within vasculature and heterogeneous blood clots. Highly controlled, reductionist in vitro imaging studies have been instrumental in providing a detailed and quantitative understanding of platelet biology and behavior, and have helped elucidate some surprising functions of platelets. In this review, we highlight the tools and approaches that enable visualization of platelets in conjunction with precise control over the local biofluidic and biochemical microenvironment. We also discuss next generation tools that add further control over microenvironment cell stiffness or enable visualization of the interactions between platelets and endothelial cells. Throughout the review, we include pragmatic knowledge on imaging systems, experimental conditions, and approaches that have proved to be useful to our in vitro imaging studies of platelets under flow.


Subject(s)
Blood Platelets/metabolism , Diagnostic Imaging/methods , Hemostasis/physiology , Blood Platelets/cytology , Humans
15.
Pediatr Int ; 61(7): 712-714, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31120634

ABSTRACT

BACKGROUND: Urinary tract infection (UTI) is one of the most common diseases in children, and urinary angiotensinogen (U-AGT) is a new biomarker gathering attention in many renal diseases. U-AGT reflects intrarenal renin-angiotensin system (RAS) activity. We conducted a study to measure U-AGT in children <4 months old with UTI. METHODS: All children <4 months old who came to Toshima Hospital with fever between January 2015 and December 2015 were included. Patients were divided into a UTI group and a non-UTI group, and U-AGT was measured. RESULTS: Median U-AGT was higher in patients with UTI compared with patients without UTI: (0.56 ng/dL, range, 0.025-2.753 ng/dL vs 0.13 ng/dL, range, 0.008-1.697 ng/dL, respectively; P < 0.05). CONCLUSIONS: U-AGT is elevated in UTI patients, and RAS activation may contribute to renal injury caused by UTI.


Subject(s)
Angiotensinogen/urine , Urinary Tract Infections/diagnosis , Biomarkers/urine , Female , Humans , Infant , Infant, Newborn , Male , Prospective Studies , Urinary Tract Infections/urine
16.
Hum Genome Var ; 6: 17, 2019.
Article in English | MEDLINE | ID: mdl-30992994

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) gene has been reported as one of the pancreatitis susceptibility genes. Although many variants of CFTR have been reported in Caucasian patients, there are few data in Japanese patients. We aimed to survey CFTR variants in Japanese children with idiopathic pancreatitis. Twenty-eight Japanese paediatric patients with idiopathic pancreatitis were enroled, who were not previously diagnosed by genetic analysis of PRSS1 and SPINK1. The entire CFTR gene was sequenced in the patients by combining LA-PCR and next-generation sequencing analysis. To determine a splice-affecting variant, CFTR expression was investigated in the nasal epithelial cells by RT-PCR. One (3.6%) and 15 (53.6%) of 28 patients had pathogenic and functionally affected variants in the CFTR gene, respectively. Two variants, p.Arg352Gln and p.Arg1453Trp, were found more frequently in the patients compared with one in Japanese healthy controls (p = 0.0078 and 0.044, respectively). We confirmed skipping of exon 10 in the nasal epithelial cells in one patient having a splice-affecting variant (c.1210-12 T(5)) in intron 9. Functionally affected variants of the CFTR gene are not so rare in Japanese paediatric patients with idiopathic pancreatitis. Surveying CFTR gene variants in a Japanese sample could help identify pancreatitis risk in these children.

17.
Nat Biomed Eng ; 2: 453-463, 2018.
Article in English | MEDLINE | ID: mdl-30533277

ABSTRACT

Alterations in the mechanical properties of erythrocytes occurring in inflammatory and hematologic disorders such as sickle cell disease (SCD) and malaria often lead to increased endothelial permeability, haemolysis, and microvascular obstruction. However, the associations among these pathological phenomena remain unknown. Here, we report a perfusable, endothelialized microvasculature-on-a-chip featuring an interpenetrating-polymer-network hydrogel that recapitulates the stiffness of blood-vessel intima, basement membrane self-deposition and self-healing endothelial barrier function for longer than 1 month. The microsystem enables the real-time visualization, with high spatiotemporal resolution, of microvascular obstruction and endothelial permeability under physiological flow conditions. We found how extracellular heme, a hemolytic byproduct, induces delayed but reversible endothelial permeability in a dose-dependent manner, and demonstrate that endothelial interactions with SCD or malaria-infected erythrocytes cause reversible microchannel occlusion and increased in situ endothelial permeability. The microvasculature-on-a-chip enables mechanistic insight into the endothelial barrier dysfunction associated with SCD, malaria and other inflammatory and haematological diseases.

18.
Lab Chip ; 18(19): 2985-2993, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30109316

ABSTRACT

Hemorrhage or uncontrolled bleeding can arise either due to a medical condition or from a traumatic injury and are typically controlled with the application of a hemostatic agent. Hemostatic agents are currently derived from animal or human products, which carry risks of blood borne infections and immune dysregulation. Therefore, the need exists for novel biomedical therapies not derived from animal or human products to achieve hemostasis. Accordingly, we created an interdigitated microelectronic bandage that applies low voltage electrical stimulation to an injury site, resulting in faster clot formation without excessive heating, accelerated fibrin formation, and hemostasis overall. Our interdigitated microelectronic bandage found fibrin formed 1.5× faster in vitro. In vivo, total cessation of bleeding was 2.5× faster, resulting in 2× less blood loss. Electricity has been used in medical applications such as defibrillation, cauterization, and electrosurgery, but scant research has focused on hemostasis. Here we report a novel surface treatment using an interdigitated microelectronic device that creates rapid hemostasis in both in vitro and in vivo bleeding models with low applied voltages, representing a new and novel class of hemostatic agents that are electrically-based.


Subject(s)
Blood Coagulation , Electricity , Hemostasis , Microtechnology/instrumentation , Humans
19.
Nat Commun ; 9(1): 509, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29410404

ABSTRACT

Hemostasis encompasses an ensemble of interactions among platelets, coagulation factors, blood cells, endothelium, and hemodynamic forces, but current assays assess only isolated aspects of this complex process. Accordingly, here we develop a comprehensive in vitro mechanical injury bleeding model comprising an "endothelialized" microfluidic system coupled with a microengineered pneumatic valve that induces a vascular "injury". With perfusion of whole blood, hemostatic plug formation is visualized and "in vitro bleeding time" is measured. We investigate the interaction of different components of hemostasis, gaining insight into several unresolved hematologic issues. Specifically, we visualize and quantitatively demonstrate: the effect of anti-platelet agent on clot contraction and hemostatic plug formation, that von Willebrand factor is essential for hemostasis at high shear, that hemophilia A blood confers unstable hemostatic plug formation and altered fibrin architecture, and the importance of endothelial phosphatidylserine in hemostasis. These results establish the versatility and clinical utility of our microfluidic bleeding model.


Subject(s)
Bleeding Time , Blood Coagulation Tests , Hemorrhage , Hemostasis , Microfluidics , Blood Coagulation , Blood Platelets/metabolism , Cell Membrane/metabolism , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Ligands , Platelet Adhesiveness , Shear Strength , Stress, Mechanical
20.
Blood ; 130(24): 2654-2663, 2017 12 14.
Article in English | MEDLINE | ID: mdl-28978568

ABSTRACT

Abnormal sickle red blood cell (sRBC) biomechanics, including pathological deformability and adhesion, correlate with clinical severity in sickle cell disease (SCD). Clinical intravenous fluids (IVFs) of various tonicities are often used during treatment of vaso-occlusive pain episodes (VOE), the major cause of morbidity in SCD. However, evidence-based guidelines are lacking, and there is no consensus regarding which IVFs to use during VOE. Further, it is unknown how altering extracellular fluid tonicity with IVFs affects sRBC biomechanics in the microcirculation, where vaso-occlusion takes place. Here, we report how altering extracellular fluid tonicity with admixtures of clinical IVFs affects sRBC biomechanical properties by leveraging novel in vitro microfluidic models of the microcirculation, including 1 capable of deoxygenating the sRBC environment to monitor changes in microchannel occlusion risk and an "endothelialized" microvascular model that measures alterations in sRBC/endothelium adhesion under postcapillary venular conditions. Admixtures with higher tonicities (sodium = 141 mEq/L) affected sRBC biomechanics by decreasing sRBC deformability, increasing sRBC occlusion under normoxic and hypoxic conditions, and increasing sRBC adhesion in our microfluidic human microvasculature models. Admixtures with excessive hypotonicity (sodium = 103 mEq/L), in contrast, decreased sRBC adhesion, but overswelling prolonged sRBC transit times in capillary-sized microchannels. Admixtures with intermediate tonicities (sodium = 111-122 mEq/L) resulted in optimal changes in sRBC biomechanics, thereby reducing the risk for vaso-occlusion in our models. These results have significant translational implications for patients with SCD and warrant a large-scale prospective clinical study addressing optimal IVF management during VOE in SCD.


Subject(s)
Anemia, Sickle Cell/blood , Anemia, Sickle Cell/physiopathology , Erythrocyte Deformability/physiology , Extracellular Fluid/physiology , Biomechanical Phenomena , Cell Adhesion/physiology , Cells, Cultured , Erythrocytes, Abnormal/physiology , Extracellular Fluid/chemistry , Hemorheology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/physiology , Humans , Osmolar Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...