Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(23): 239901, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38134810

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.131.156703.

2.
Phys Rev Lett ; 131(15): 156703, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37897743

ABSTRACT

The Hanle magnetoresistance is a telltale signature of spin precession in nonmagnetic conductors, in which strong spin-orbit coupling generates edge spin accumulation via the spin Hall effect. Here, we report the existence of a large Hanle magnetoresistance in single layers of Mn with weak spin-orbit coupling, which we attribute to the orbital Hall effect. The simultaneous observation of a sizable Hanle magnetoresistance and vanishing small spin Hall magnetoresistance in BiYIG/Mn bilayers corroborates the orbital origin of both effects. We estimate an orbital Hall angle of 0.016, an orbital relaxation time of 2 ps and diffusion length of the order of 2 nm in disordered Mn. Our findings indicate that current-induced orbital moments are responsible for magnetoresistance effects comparable to or even larger than those determined by spin moments, and provide a tool to investigate nonequilibrium orbital transport phenomena.

3.
ACS Biomater Sci Eng ; 9(7): 3935-3944, 2023 07 10.
Article in English | MEDLINE | ID: mdl-34309355

ABSTRACT

Learning from Nature and leveraging 3D printing, mechanical testing, and numerical modeling, this study aims to provide a deeper understanding of the structure-property relationship of crystal-lattice-inspired materials, starting from the study of single unit cells inspired by the cubic Bravais crystal lattices. In particular, here we study the simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) lattices. Mechanical testing of 3D-printed structures is used to investigate the influence of different printing parameters. Numerical models, validated based on experimental testing carried out on single unit cells and embedding manufacturing-induced defects, are used to derive the scaling laws for each studied topology, thus providing guidelines for materials selection and design, and the basis for future homogenization and optimization studies. We observe no clear effect of the layer thickness on the mechanical properties of both bulk material and lattice structures. Instead, the printing direction effect, negligible in solid samples, becomes relevant in lattice structures, yielding different stiffnesses of struts and nodes. This phenomenon is accounted for in the proposed simulation framework. The numerical models of large arrays, used to define the scaling laws, suggest that the chosen topologies have a mainly stretching-dominated behavior─a hallmark of structurally efficient structures─where the modulus scales linearly with the relative density. By looking ahead, mimicking the characteristic microscale structure of crystalline materials will allow replicating the typical behavior of crystals at a larger scale, combining the hardening traits of metallurgy with the characteristic behavior of polymers and the advantage of lightweight architected structures, leading to novel materials with multiple functions.


Subject(s)
Polymers , Printing, Three-Dimensional , Phenotype
4.
Nat Mater ; 21(6): 640-646, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35552524

ABSTRACT

Ferrimagnetic alloys are model systems for understanding the ultrafast magnetization switching in materials with antiferromagnetically coupled sublattices. Here we investigate the dynamics of the rare-earth and transition-metal sublattices in ferrimagnetic GdFeCo and TbCo dots excited by spin-orbit torques with combined temporal, spatial and elemental resolution. We observe distinct switching regimes in which the magnetizations of the two sublattices either remain synchronized throughout the reversal process or switch following different trajectories in time and space. In the latter case, we observe a transient ferromagnetic state that lasts up to 2 ns. The asynchronous switching of the two magnetizations is ascribed to the master-agent dynamics induced by the spin-orbit torques on the transition-metal and rare-earth sublattices and their weak antiferromagnetic coupling, which depends sensitively on the alloy microstructure. Larger antiferromagnetic exchange leads to faster switching and shorter recovery of the magnetization after a current pulse. Our findings provide insight into the dynamics of ferrimagnets and the design of spintronic devices with fast and uniform switching.

5.
Phys Rev Lett ; 127(16): 167202, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34723598

ABSTRACT

We report on the occurrence of strong interlayer Dzyaloshinskii-Moriya interaction (DMI) between an in-plane magnetized Co layer and a perpendicularly magnetized TbFe layer through a Pt spacer. The DMI causes a chiral coupling that favors one-handed orthogonal magnetic configurations of Co and TbFe, which we reveal through Hall effect and magnetoresistance measurements. The DMI coupling mediated by Pt causes effective magnetic fields on either layer of up to 10-15 mT, which decrease monotonically with increasing Pt thickness. Ru, Ta, and Ti spacers mediate a significantly smaller coupling compared to Pt, highlighting the essential role of Pt in inducing the interlayer DMI. These results are relevant to understand and maximize the interlayer coupling induced by the DMI as well as to design spintronic devices with chiral spin textures.

6.
Nature ; 579(7798): 214-218, 2020 03.
Article in English | MEDLINE | ID: mdl-32161383

ABSTRACT

Spin-based logic architectures provide nonvolatile data retention, near-zero leakage, and scalability, extending the technology roadmap beyond complementary metal-oxide-semiconductor logic1-13. Architectures based on magnetic domain walls take advantage of the fast motion, high density, non-volatility and flexible design of domain walls to process and store information1,3,14-16. Such schemes, however, rely on domain-wall manipulation and clocking using an external magnetic field, which limits their implementation in dense, large-scale chips. Here we demonstrate a method for performing all-electric logic operations and cascading using domain-wall racetracks. We exploit the chiral coupling between neighbouring magnetic domains induced by the interfacial Dzyaloshinskii-Moriya interaction17-20, which promotes non-collinear spin alignment, to realize a domain-wall inverter, the essential basic building block in all implementations of Boolean logic. We then fabricate reconfigurable NAND and NOR logic gates, and perform operations with current-induced domain-wall motion. Finally, we cascade several NAND gates to build XOR and full adder gates, demonstrating electrical control of magnetic data and device interconnection in logic circuits. Our work provides a viable platform for scalable all-electric magnetic logic, paving the way for memory-in-logic applications.

7.
Nat Nanotechnol ; 15(2): 111-117, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31988509

ABSTRACT

Current-induced spin-transfer torques (STT) and spin-orbit torques (SOT) enable the electrical switching of magnetic tunnel junctions (MTJs) in non-volatile magnetic random access memories. To develop faster memory devices, an improvement in the timescales that underlie the current-driven magnetization dynamics is required. Here we report all-electrical time-resolved measurements of magnetization reversal driven by SOT in a three-terminal MTJ device. Single-shot measurements of the MTJ resistance during current injection reveal that SOT switching involves a stochastic two-step process that consists of a domain nucleation time and propagation time, which have different genesis, timescales and statistical distributions compared to STT switching. We further show that the combination of SOT, STT and the voltage control of magnetic anisotropy leads to reproducible subnanosecond switching with the spread of the cumulative switching time smaller than 0.2 ns. Our measurements unravel the combined impact of SOT, STT and the voltage control of magnetic anisotropy in determining the switching speed and efficiency of MTJ devices.

8.
J Dairy Res ; 76(3): 365-71, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19445827

ABSTRACT

The nutritional distinctiveness of pasture-fed dairy products is mainly influenced by the transfer of specific chemical compounds from the grass to the milk and by their effect on rumen microflora and animal metabolism. Thus, the pasture-fed origin has to be objectively proven, using fast and reproducible analytical methods applied to finished products, in order to protect consumers against potential frauds. In this work, Electronic Nose patterns of Alpine milks produced by cows grazing Trifolium alpinum and Festuca nigrescens pasture types have been examined, in order to test the potential use of this device for routine control analyses of the botanical origin of milk and dairy products. The data have been treated with different multivariate analyses (MANOVA, LDA) and chemometrics (MPLS). The results allow a very good classification of the milks, according to the two treatments. Such results demonstrate that this device could be successfully applied to PDO dairy products food chain as a tool for the determination of their dietary origin.


Subject(s)
Diet , Milk/chemistry , Milk/classification , Odorants/analysis , Animals , Cattle , Electric Impedance , Electronics , Female , Festuca , Trifolium
SELECTION OF CITATIONS
SEARCH DETAIL
...