Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 9598, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671063

ABSTRACT

Allergic conjunctivitis (AC) is the most common form of allergic eye disease and an increasingly prevalent condition. Topical eye drop treatments are the usual approach for managing AC, although their impact on the ocular surface is not frequently investigated. The aim of this study was to perform a comparative physicochemical characterization, and in vitro biological evaluations in primary conjunctival and corneal epithelial cells of the new multidose preservative-free bilastine 0.6% and main commercially available eye drops. MTT assay was used to measure cell viability; oxidative stress was analyzed with a ROS-sensitive probe; and apoptosis was evaluated monitoring caspase 3/7 activation. Differences in pH value, osmolarity, viscosity and phosphate levels were identified. Among all formulations, bilastine exhibited pH, osmolarity and viscosity values closer to tear film (7.4, 300 mOsm/l and ~ 1.5-10 mPa·s, respectively), and was the only phosphates-free solution. Single-dose ketotifen did not induce ROS production, and single-dose azelastine and bilastine only induced a mild increase. Bilastine and single-dose ketotifen and azelastine showed high survival rates attributable to the absence of preservative in its formulation, not inducing caspase-3/7-mediated apoptosis after 24 h. Our findings support the use of the new bilastine 0.6% for treating patients with AC to preserve and maintain the integrity of the ocular surface.


Subject(s)
Apoptosis , Benzimidazoles , Caspase 3 , Cell Survival , Ophthalmic Solutions , Preservatives, Pharmaceutical , Ophthalmic Solutions/pharmacology , Humans , Preservatives, Pharmaceutical/pharmacology , Cell Survival/drug effects , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Caspase 3/metabolism , Apoptosis/drug effects , Piperidines/pharmacology , Oxidative Stress/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Conjunctiva/drug effects , Conjunctiva/metabolism , Conjunctiva/pathology , Caspase 7/metabolism , Reactive Oxygen Species/metabolism , Conjunctivitis, Allergic/drug therapy , Conjunctivitis, Allergic/pathology , Conjunctivitis, Allergic/metabolism , Phthalazines/pharmacology , Osmolar Concentration , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Cells, Cultured , Viscosity
2.
Cells ; 11(17)2022 09 04.
Article in English | MEDLINE | ID: mdl-36078167

ABSTRACT

The antibiotic tetracycline demeclocycline (DMC) was recently reported to rescue α-synuclein (α-Syn) fibril-induced pathology. However, the antimicrobial activity of DMC precludes its potential use in long-term neuroprotective treatments. Here, we synthesized a doubly reduced DMC (DDMC) derivative with residual antibiotic activity and improved neuroprotective effects. The molecule was obtained by removal the dimethylamino substituent at position 4 and the reduction of the hydroxyl group at position 12a on ring A of DMC. The modifications strongly diminished its antibiotic activity against Gram-positive and Gram-negative bacteria. Moreover, this compound preserved the low toxicity of DMC in dopaminergic cell lines while improving its ability to interfere with α-Syn amyloid-like aggregation, showing the highest effectiveness of all tetracyclines tested. Likewise, DDMC demonstrated the ability to reduce seeding induced by the exogenous addition of α-Syn preformed fibrils (α-SynPFF) in biophysical assays and in a SH-SY5Y-α-Syn-tRFP cell model. In addition, DDMC rendered α-SynPFF less inflammogenic. Our results suggest that DDMC may be a promising drug candidate for hit-to-lead development and preclinical studies in Parkinson's disease and other synucleinopathies.


Subject(s)
Neuroblastoma , Neuroprotective Agents , Synucleinopathies , Anti-Bacterial Agents/pharmacology , Demeclocycline , Gram-Negative Bacteria , Gram-Positive Bacteria , Humans , Lead , Neuroprotective Agents/pharmacology
3.
Nanomaterials (Basel) ; 11(4)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916037

ABSTRACT

The UV-nanoimprint lithography(UV-NIL) fabrication of a novel network of micron-sized channels, forming an open channel microfluidic system is described. Details about the complete manufacturing process, from mastering to fabrication in small batches and in high throughput with up to 1200 micro titer plates per hour is presented. Deep insight into the evaluation of a suitable UV-curable material, mr-UVCur26SF is given, presenting cytotoxic evaluation, cell compatibility tests and finally a neuronal assay. The results indicate how the given pattern, in combination with the resist, paves the way to faster, cheaper, and more reliable drug screening.

4.
Exp Eye Res ; 184: 15-23, 2019 07.
Article in English | MEDLINE | ID: mdl-30978347

ABSTRACT

PURPOSE: To assess the effect of somatostatin (SST) on the permeability of human retinal pigment epithelial cells. METHODS: We conducted two experiments, exposing cells from human-fetal retinal pigment epithelium (hfRPE) cultures to vascular endothelial growth factor (VEGF), with or without SST pretreatment, in one, and to hypoxic conditions, again with or without SST pretreatment, in the other. The paracellular permeability of hfRPE was assessed by measuring transepithelial electrical resistance (TER) and fluorescein isothiocyanate-sodium (FITC-sodium) flux. Immunochemistry analysis was used to assess the expression of occludin and Zonula occludens-1(ZO-1). RESULTS: Both VEGF and hypoxia increased permeability of the hfRPE, as measured by TER and tracer flux, and decreased occludin and ZO-1staining, as measured by immunochemistry. Pretreatment of cultures with SST partially counteracted these effects. CONCLUSIONS: Somatostatin may play a role in the regulation of permeability across retinal pigment epithelium. It may act as an anti-permeability factor in the retina through the enhancement of tight junction function.


Subject(s)
Hormones/pharmacology , Retinal Pigment Epithelium/drug effects , Somatostatin/pharmacology , Blood-Retinal Barrier/drug effects , Cell Membrane Permeability , Cells, Cultured , Electric Impedance , Fluorescein/metabolism , Humans , Hypoxia/metabolism , Immunochemistry , Occludin/metabolism , Retinal Pigment Epithelium/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Zonula Occludens-1 Protein/metabolism
5.
Biomed Pharmacother ; 111: 414-426, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30594780

ABSTRACT

5-Hydroxy-L-tryptophan (5-HTP) is a serotonin pathway metabolite of L-tryptophan in the brain. In the knowledge that the biological properties of some compounds can be modified upon metal complexation, a new solid metal complex, [Cu(5-hydroxytryptophan)2].H2O (Cu5HTP), has been synthesized and characterized to analyze the modification of some biological properties. The conformational investigations (optimized in gas phase at B3LYP/6-311G** theory level) suggest the coexistence of two conformers of Cu5HTP with cis- and trans- arrangements of the amino acids in the equatorial plane. The trans- Cu5HTP1 complex is the most stable conformer. The complexation led to an enhancement of the antioxidant properties of the ligand. The metal complex also improved the anticancer behavior of the ligand (tested in cancer cell lines derived from human lung (A549), cervix (HeLa) and colon (HCT-116)). It did not show toxicity against either the non-malignant human lung fibroblast (MRC-5) cell line or Artemia salina and did not behave as mutagenic agent (Ames test). Cellular reactive oxygen species production may be one of the possible mechanisms of action. Besides, the metal complex exerted neuroprotective action on cortical neurons from embryonic 18 days rats exposed to glutamate.


Subject(s)
5-Hydroxytryptophan/chemical synthesis , Antineoplastic Agents/chemical synthesis , Antioxidants/chemical synthesis , Copper/chemistry , Cytotoxins/chemical synthesis , Neuroprotective Agents/chemical synthesis , 5-Hydroxytryptophan/pharmacology , A549 Cells , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Cell Survival/drug effects , Cell Survival/physiology , Copper/pharmacology , Cytotoxins/pharmacology , Dose-Response Relationship, Drug , HCT116 Cells , HeLa Cells , Humans , Neuroprotective Agents/pharmacology
6.
SLAS Technol ; 23(3): 207-216, 2018 06.
Article in English | MEDLINE | ID: mdl-29412765

ABSTRACT

Nomad Technology (Innoprot [Innovative Technologies in Biological Systems], Derio, Spain), a novel tool for multiplexing high-throughput cell-based G protein-coupled receptor (GPCR) assays, is described in this work. This new technology comprises a family of fluorescent biosensors called Nomad Biosensors that allow for the measurement of responses mediated by G proteins through their interactions with second-messenger transduction proteins. GPCRs are one of the largest protein families of receptors in eukaryotes, and their signaling mediates important physiological processes within cells. Thus, GPCRs are associated with a wide variety of diseases, and considered major targets in therapeutic research. Nomad constitutes a novel tool for unraveling the mechanism of GPCR signal transduction by simultaneously tracing different pathways. GPCR activation changes the structural folding of the biosensor and promotes its vesicularization, as well as an increase in the fluorescence intensity. Based on this technology, the MPXNomad cellular model was developed to discriminate between the Ca2+-mediated pathway and the cyclic adenosine monophosphate (cAMP)-mediated pathway. To validate this model, endothelin receptor B (ETBR) was coexpressed into the MPXNomad cell line and assessed with a specific agonist, an antagonist, and a chemical library of compounds. Nomad Technology optimizes the identification of novel GPCR ligands and enables the testing of large numbers of compounds.


Subject(s)
Biosensing Techniques , Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays/methods , Calcium/metabolism , Cell Line, Tumor , Cloning, Molecular , Cyclic AMP/metabolism , Endothelins/metabolism , Fluorescence , Humans , Image Processing, Computer-Assisted , Ligands , Receptor, Endothelin B/genetics , Receptor, Endothelin B/metabolism , Receptors, G-Protein-Coupled/agonists , Signal Transduction
7.
SLAS Discov ; 22(1): 67-76, 2017 01.
Article in English | MEDLINE | ID: mdl-27703082

ABSTRACT

Parkinson disease (PD) is a prevalent neurodegenerative disease characterized by selective degeneration of dopaminergic neurons in the substantia nigra, causing tremor and motor impairment. Parkin protein, whose mutants are the cause of Parkinson disease type 2 (PARK2), has been mechanistically linked to the regulation of apoptosis and the turnover of damaged mitochondria. Several studies have implicated aberrant mitochondria as a key contributor to the development of PD. In the attempt to discover new drugs, high-content cell-based assays are becoming more important to mimic the nature of biological processes and their diversifications in diseases and will be essential for lead identification and the optimization of therapeutic candidates. We have developed a novel fluorescence cell-based assay for high-content screening to find compounds that can promote the mitochondrial localization of Parkin without severe mitochondrial damage induction. In this work, this model was used to screen a library of 1280 compounds. After the screening campaign, the positive compounds were chosen for further testing, based on the strength of the initial response and lack of cytotoxicity. These results indicated that this Parkin cell-based assay is a robust (Z' > 0.5) and valid strategy to test potential candidates for preclinical studies.


Subject(s)
Biological Assay/methods , Drug Evaluation, Preclinical/methods , Parkinson Disease/drug therapy , Ubiquitin-Protein Ligases/metabolism , Cell Line, Tumor , Fluorescence , Humans , Mitochondria/metabolism , Parkinson Disease/metabolism , Proscillaridin/therapeutic use , Rhodamines
8.
Bioorg Med Chem ; 24(22): 6004-6011, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27707626

ABSTRACT

The anticancer and antimetastatic behavior of the flavonoid luteolin and its oxidovanadium(IV) complex [VO(lut)(H2O)2]Na·3H2O (VOlut) has been investigated. Considering that the complex displayed strong anticancer activity on MDAMB231 human breast cancer cell line we herein determined through in vitro assays that the complex would probably reduce breast cancer cell metastasis in a higher extent than the natural antioxidant. In the CT26 colon cancer cell line a stronger anticancer effect has also been determined for the complex (IC50 0.9µM) and in addition it did not exert toxic effects on normal colon epithelial cells at concentrations up to 10µM. Working with a murine model of highly aggressive, orthotopic colon cancer model (CT26 cancer cell lines) it has been determined that the complex might prevent metastatic dissemination of the colon cancer cells to the liver. The flavonoid luteolin also exerted anticancer effects (at a low degree, IC50 5.9µM) on CT26 cell line and produced a 24% reduction of colon cancer liver metastasis.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Colorectal Neoplasms/drug therapy , Disease Models, Animal , Luteolin/pharmacology , Vanadium/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/pathology , Cell Movement/drug effects , Cell Proliferation/drug effects , Colorectal Neoplasms/pathology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/pathology , Luteolin/chemistry , Mice , Mice, Inbred BALB C , Molecular Structure , Structure-Activity Relationship , Tumor Cells, Cultured , Vanadium/chemistry
9.
Bioorg Med Chem ; 24(18): 4108-4119, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27374881

ABSTRACT

The natural antioxidant flavonoid diosmin, found in citric fruits, showed low antioxidant properties among other flavonoids due to its structural characteristics and low cytotoxicity against lung (A549) and breast (T47D, SKBR3 and MDAMB231) cancer cell lines. The anticancer behavior has been improved by the metal complex generated with the flavonoid and the oxidovanadium(IV) ion. This new complex, [VO(dios)(OH)3]Na5·6H2O (VOdios), has been synthesized and characterized both in solid and solution states. The interaction of the metal ion through the sugar moiety of diosmin precluded the improvement of the antioxidant effects. However, the cell-killing effects tested in human lung A549 and breast T47D, SKBR3 and MDAMB231 cancer cell lines, were enhanced by complexation. The anti-proliferative effects on the human lung cancer cell line were accompanied by cellular ROS generation and an increase in cytoplasm condensation. The breast cancer cell lines did not produce caspase3/7 activation, mitochondrial potential reduction and ROS generation. Therefore, a non-apoptotic form of cell death in a caspase- and oxidative stress-independent manner has been proposed. The protein binding ability has been monitored by the quenching of tryptophan emission in the presence of the compounds using bovine serum albumin (BSA) as a model protein. Both compounds could be distributed and transported in vivo and the complex displayed stronger binding affinity and higher contributions to the hydrogen bond and van der Waals forces.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Diosmin/analogs & derivatives , Diosmin/pharmacology , Vanadium/chemistry , Vanadium/pharmacology , Animals , Caspases/metabolism , Cattle , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Serum Albumin, Bovine/metabolism
10.
J Inorg Biochem ; 157: 80-93, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26828287

ABSTRACT

Chemotherapy using metal coordination compounds for cancer treatment is the work of the ongoing research. Continuing our research on the improvement of the anticancer activity of natural flavonoids by metal complexation, a coordination compound of the natural antioxidant flavone luteolin (lut) and the oxidovanadium(IV) cation has been synthesized and characterized. Using different physicochemical measurements some structural aspects of [VO(lut)(H2O)2]Na·3H2O (VOlut) were determined. The metal coordinated to two cis-deprotonated oxygen atoms (ArO(-)) of the ligand and two H2O molecules. Magnetic measurements in solid state indicated the presence of an effective exchange pathway between adjacent vanadium ions. VOlut improved the antioxidant capacity of luteolin only against hydroxyl radical. The antitumoral effects were evaluated on MDAMB231 breast cancer and A549 lung cancer cell lines. VOlut exhibited higher viability inhibition (IC50=17 µM) than the ligand on MDAMB231 cells but they have the same behavior on A549 cells (ca. IC50=60 µM). At least oxidative stress processes were active during cancer cell-killing. When metals chelated through the carbonyl group and one adjacent OH group of the flavonoid an effective improvement of the biological properties has been observed. In VOlut the different coordination may be the cause of the small improvement of some of the tested properties of the flavonoid. Luteolin and VOlut could be distributed and transported in vivo. Luteolin interacted in the microenvironment of the tryptophan group of the serum binding protein, BSA, by means of electrostatic forces and its complex bind the protein by H bonding and van der Waals interactions.


Subject(s)
Antineoplastic Agents/chemistry , Antioxidants/chemistry , Luteolin/chemistry , Serum Albumin, Bovine/chemistry , Vanadium Compounds/chemistry , Electron Spin Resonance Spectroscopy , Protein Binding , Spectrophotometry, Ultraviolet
11.
Colloids Surf B Biointerfaces ; 135: 18-26, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26231862

ABSTRACT

Solid lipid nanoparticles (SLN) composed of long-chain fatty acids (palmitic acid, stearic acid or arachidic acid), Epikuron 200 (purified phosphatidylcholine), and bile salts (cholate, taurocholate or taurodeoxycholate) have been prepared by dilution of a microemulsion. A total of five different systems were prepared, and characterized by photon correlation spectroscopy, transmission electron microscopy, differential scanning calorimetry, and infrared spectroscopy. The SLN formulation showing optimal properties (lowest size and polydispersity index and highest zeta potential) was obtained with stearic acid and taurodeoxycholate as cosurfactant. This formulation was loaded with Calendula officinalis extract, a natural compound used on ophthalmic formulations given its anti-inflammatory, emollient, and wound repairing activity. Calendula-loaded SLN preparations were characterized in order to determine loading capacity and entrapment efficiency. In vitro cytotoxicity and wound healing efficacy of Calendula-loaded SLN compared to that of a free plant extract were evaluated on a conjunctival epithelium cell line WKD. Our results suggest that this SLN formulation is a safe and solvent-free Calendula extract delivery system which could provide a controlled therapeutic alternative for reducing disease-related symptoms and improving epithelium repair in ocular surface.


Subject(s)
Calendula/chemistry , Nanoparticles/chemistry , Plant Extracts/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Bile Acids and Salts/chemistry , Conjunctiva/cytology , Conjunctiva/drug effects , Epithelial Cells/drug effects , Fatty Acids/chemistry , Freeze Drying , Humans , Lipids/chemistry , Particle Size , Wound Healing/drug effects
12.
J Inorg Biochem ; 149: 12-24, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25957189

ABSTRACT

Naringenin, a natural antioxidant present in grapefruit, oranges and the skin of tomatoes showed low antioxidant properties among other flavonoids due to its structural characteristics. Since many flavonoids were shown to have cell-killing and antioxidant activities, naringenin was investigated herein. In parallel with its antioxidant activities the flavonoid showed very low cytotoxicity at concentrations up to 100 µM against lung (A549) and breast (SKBr3 and MDAMB231) cancer cell lines. Furthermore, a newly-synthesized and characterized complex of naringenin and oxidovanadium(IV) ([V(IV)O(nar)2] · 2H2O, VOnar, with weak ferromagnetic coupling) was also studied. As a result, VOnar acted as a better compound on cell-killing and antioxidant activities (in vitro) than naringenin. The anti-proliferative effect of VOnar was accompanied by reactive oxygen species (ROS) generation, cell membrane and DNA damages, cell cycle arrest, caspase 3/7 activation and mitochondrial potential reduction. The higher parameters observed for the MDAMB231 cell line have been related to its low glutathione (GSH) content. The assays of the interaction of bovine serum albumin (BSA) with the complex showed the affinity of protein toward it and that there is only one binding site on the BSA molecule. However, metal complexation decreased the binding affinity to BSA of naringenin probably due to a steric hindrance of the complex.


Subject(s)
Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Flavanones/chemistry , Organometallic Compounds/pharmacology , Serum Albumin, Bovine/metabolism , Vanadium/chemistry , Antineoplastic Agents/chemistry , Antioxidants/chemistry , Apoptosis , Binding Sites , Cell Cycle Checkpoints , Cell Line, Tumor , DNA Damage , Epithelial Cells/drug effects , Humans , Organometallic Compounds/chemistry , Protein Binding , Serum Albumin, Bovine/chemistry
13.
J Inorg Biochem ; 135: 86-99, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24681549

ABSTRACT

A new chlorogenate oxidovanadium complex (Na[VO(chlorog)(H2O)3].4H2O) was synthesized by using Schlenk methodology in the course of a reaction at inert atmosphere in which deprotonated chlorogenic acid ligand binds to oxidovanadium(IV) in a reaction experiment controlled via EPR technique and based in a species distribution diagram. The compound was characterized by FTIR, EPR, UV-visible and diffuse reflectance spectroscopies and thermogravimetric, differential thermal and elemental analyses. The ligand and the complex were tested for their antioxidant effects on DPPH (1,1-diphenyl-2-picrylhydrazyl radical), ABTS(+) (radical cation of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt), O2(-), OH and ROO radicals and their cytotoxic activity on different cancer cell lines (SKBR3, T47D and MDAMB231) and primary human mammary epithelial cells. The complex behaved as good antioxidant agent with strongest inhibitory effects on O2(-), OH and ROO radicals and exhibited selective cytotoxicity against SKBR3 cancer cell line. Albumin interaction experiments denoted high affinity toward the complex and its calculated binding constant was indicative of a strong binding to the protein. Based on this study, it is hypothesized that Na[VO(chlorog)(H2O)3].4H2O would be a promising candidate for further evaluation as an antioxidant and anticancer agent.


Subject(s)
Antineoplastic Agents/chemical synthesis , Coordination Complexes/chemical synthesis , Free Radical Scavengers/chemical synthesis , Serum Albumin, Bovine/chemistry , Animals , Antineoplastic Agents/pharmacology , Biphenyl Compounds/chemistry , Breast Neoplasms , Cattle , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival , Coordination Complexes/pharmacology , Drug Stability , Female , Free Radical Scavengers/pharmacology , Free Radicals/chemistry , Humans , Oxidation-Reduction , Picrates/chemistry , Protein Binding , Superoxide Dismutase/chemistry
14.
Chem Biol Interact ; 206(2): 289-301, 2013 Nov 25.
Article in English | MEDLINE | ID: mdl-24125835

ABSTRACT

It is known that flavonoids possess, among others, antioxidant and antitumoral properties that depend on their molecular structure. The central objective if this study was to investigate the potential antioxidant and antiproliferative properties of the flavonol morin and its new oxovanadium(IV) complex (VOmor) that was synthesized in order to modify the morin chemical structure. Two osteoblast (UMR106 and MC3T3E1), two breast tumor (T47D and SKBR3) and breast epithelial cell lines in culture were used for the antitumoral determinations. Additionally, a comparative study of their antioxidant capacities using different radicals (DPPH, ABTS(+), OH, O2(-), ROO) was performed. Selected mechanisms of action were studied using the breast cancer cell lines. Results obtained show that morin and its complex behaved as good antioxidant agents for some of the radicals and that the complexation improved the behavior with respect to OH and O2(-) radicals being morin more effective as ROO scavenger. A considerable variation in sensitivity was observed in the breast cancer cells but non-specificity was found for the treatment of osteosarcoma. Moreover, the compounds did not affect the normal proliferation of the breast epithelial mammal cells. The mechanistic studies demonstrated that the complex did not generate reactive oxygen species in the cells (confirming the in vitro studies) and did not produce any damage of DNA. The plasmatic membrane was observed to be damaged only in the SKBR3 cell line. In contrast, the perturbation of the mitochondrial membrane potential and the activation of caspase 3/7 for the breast tumor cells revealed an apoptotic cell death process. All these results collectively suggested that VOmor complex could serve as promising pharmacologically active substance against breast cancer treatment.


Subject(s)
Antineoplastic Agents/chemistry , Antioxidants/chemistry , Coordination Complexes/chemistry , Flavonoids/chemistry , Vanadium/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/toxicity , Caspase 3/metabolism , Caspase 7/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Electron Spin Resonance Spectroscopy , Humans , Mice , Rats , Reactive Oxygen Species/metabolism
15.
J Transl Med ; 9: 142, 2011 Aug 25.
Article in English | MEDLINE | ID: mdl-21867538

ABSTRACT

BACKGROUND: Human melanoma frequently colonizes bone marrow (BM) since its earliest stage of systemic dissemination, prior to clinical metastasis occurrence. However, how melanoma cell adhesion and proliferation mechanisms are regulated within bone marrow stromal cell (BMSC) microenvironment remain unclear. Consistent with the prometastatic role of inflammatory and angiogenic factors, several studies have reported elevated levels of cyclooxygenase-2 (COX-2) in melanoma although its pathogenic role in bone marrow melanoma metastasis is unknown. METHODS: Herein we analyzed the effect of cyclooxygenase-2 (COX-2) inhibitor celecoxib in a model of generalized BM dissemination of left cardiac ventricle-injected B16 melanoma (B16M) cells into healthy and bacterial endotoxin lipopolysaccharide (LPS)-pretreated mice to induce inflammation. In addition, B16M and human A375 melanoma (A375M) cells were exposed to conditioned media from basal and LPS-treated primary cultured murine and human BMSCs, and the contribution of COX-2 to the adhesion and proliferation of melanoma cells was also studied. RESULTS: Mice given one single intravenous injection of LPS 6 hour prior to cancer cells significantly increased B16M metastasis in BM compared to untreated mice; however, administration of oral celecoxib reduced BM metastasis incidence and volume in healthy mice, and almost completely abrogated LPS-dependent melanoma metastases. In vitro, untreated and LPS-treated murine and human BMSC-conditioned medium (CM) increased VCAM-1-dependent BMSC adherence and proliferation of B16M and A375M cells, respectively, as compared to basal medium-treated melanoma cells. Addition of celecoxib to both B16M and A375M cells abolished adhesion and proliferation increments induced by BMSC-CM. TNFα and VEGF secretion increased in the supernatant of LPS-treated BMSCs; however, anti-VEGF neutralizing antibodies added to B16M and A375M cells prior to LPS-treated BMSC-CM resulted in a complete abrogation of both adhesion- and proliferation-stimulating effect of BMSC on melanoma cells. Conversely, recombinant VEGF increased adherence to BMSC and proliferation of both B16M and A375M cells, compared to basal medium-treated cells, while addition of celecoxib neutralized VEGF effects on melanoma. Recombinant TNFα induced B16M production of VEGF via COX-2-dependent mechanism. Moreover, exogenous PGE2 also increased B16M cell adhesion to immobilized recombinant VCAM-1. CONCLUSIONS: We demonstrate the contribution of VEGF-induced tumor COX-2 to the regulation of adhesion- and proliferation-stimulating effects of TNFα, from endotoxin-activated bone marrow stromal cells, on VLA-4-expressing melanoma cells. These data suggest COX-2 neutralization as a potential anti-metastatic therapy in melanoma patients at high risk of systemic and bone dissemination due to intercurrent infectious and inflammatory diseases.


Subject(s)
Bone Marrow/pathology , Cellular Microenvironment/drug effects , Cyclooxygenase 2/metabolism , Melanoma/enzymology , Melanoma/pathology , Vascular Endothelial Growth Factor A/pharmacology , Animals , Blotting, Western , Bone Marrow/drug effects , Bone Marrow Neoplasms/pathology , Bone Marrow Neoplasms/secondary , Celecoxib , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Culture Media, Conditioned/pharmacology , Humans , Lipopolysaccharides/pharmacology , Male , Melanoma, Experimental/enzymology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Models, Biological , Pyrazoles/administration & dosage , Pyrazoles/pharmacology , Stromal Cells/drug effects , Stromal Cells/metabolism , Sulfonamides/administration & dosage , Sulfonamides/pharmacology , Vascular Cell Adhesion Molecule-1/pharmacology , Vascular Endothelial Growth Factor A/antagonists & inhibitors
16.
J Transl Med ; 9: 59, 2011 May 12.
Article in English | MEDLINE | ID: mdl-21569399

ABSTRACT

BACKGROUND: Implantation and growth of metastatic cancer cells at distant organs is promoted by inflammation-dependent mechanisms. A hepatic melanoma metastasis model where a majority of metastases are generated via interleukin-18-dependent mechanisms was used to test whether anti-inflammatory properties of resveratrol can interfere with mechanisms of metastasis. METHODS: Two experimental treatment schedules were used: 1) Mice received one daily oral dose of 1 mg/kg resveratrol after cancer cell injection and the metastasis number and volume were determined on day 12. 2) Mice received one daily oral dose of 1 mg/kg resveratrol along the 5 days prior to the injection of cancer cells and both interleukin-18 (IL-18) concentration in the hepatic blood and microvascular retention of luciferase-transfected B16M cells were determined on the 18th hour. In vitro, primary cultured hepatic sinusoidal endothelial cells were treated with B16M-conditioned medium to mimic their in vivo activation by tumor-derived factors and the effect of resveratrol on IL-18 secretion, on vascular cell adhesion molecule-1 (VCAM-1) expression and on tumor cell adhesion were studied. The effect of resveratrol on melanoma cell activation by IL-18 was also studied. RESULTS: Resveratrol remarkably inhibited hepatic retention and metastatic growth of melanoma cells by 50% and 75%, respectively. The mechanism involved IL-18 blockade at three levels: First, resveratrol prevented IL-18 augmentation in the blood of melanoma cell-infiltrated livers. Second, resveratrol inhibited IL-18-dependent expression of VCAM-1 by tumor-activated hepatic sinusoidal endothelium, preventing melanoma cell adhesion to the microvasculature. Third, resveratrol inhibited adhesion- and proliferation-stimulating effects of IL-18 on metastatic melanoma cells through hydrogen peroxide-dependent nuclear factor-kappaB translocation blockade on these cells. CONCLUSIONS: These results demonstrate multiple sites for therapeutic intervention using resveratrol within the prometastatic microenvironment generated by tumor-induced hepatic IL-18, and suggest a remarkable effect of resveratrol in the prevention of inflammation-dependent melanoma metastasis in the liver.


Subject(s)
Inflammation/prevention & control , Interleukin-18/metabolism , Liver Neoplasms/pathology , Melanoma/prevention & control , Melanoma/secondary , Stilbenes/therapeutic use , Animals , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Endothelium/drug effects , Endothelium/metabolism , Endothelium/pathology , Inflammation/complications , Liver/blood supply , Liver/drug effects , Liver/pathology , Liver Neoplasms/complications , Melanoma/complications , Melanoma/metabolism , Melanoma, Experimental/complications , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Microvessels/drug effects , Microvessels/pathology , Models, Biological , Neoplasm Transplantation , Resveratrol , Stilbenes/pharmacology , Tumor Microenvironment/drug effects , Vascular Cell Adhesion Molecule-1/metabolism
17.
J Transl Med ; 6: 57, 2008 Oct 09.
Article in English | MEDLINE | ID: mdl-18844982

ABSTRACT

BACKGROUND: The recruitment of vascular stromal and endothelial cells is an early event occurring during cancer cell growth at premetastatic niches, but how the microenvironment created by the initial three-dimensional (3D) growth of cancer cells affects their angiogenesis-stimulating potential is unclear. METHODS: The proangiogenic profile of CT26 murine colorectal carcinoma cells was studied in seven-day cultured 3D-spheroids of <300 mum in diameter, produced by the hanging-drop method to mimic the microenvironment of avascular micrometastases prior to hypoxia occurrence. RESULTS: Spheroid-derived CT26 cells increased vascular endothelial growth factor (VEGF) secretion by 70%, which in turn increased the in vitro migration of primary cultured hepatic sinusoidal endothelium (HSE) cells by 2-fold. More importantly, spheroid-derived CT26 cells increased lymphocyte function associated antigen (LFA)-1-expressing cell fraction by 3-fold; and soluble intercellular adhesion molecule (ICAM)-1, given to spheroid-cultured CT26 cells, further increased VEGF secretion by 90%, via cyclooxygenase (COX)-2-dependent mechanism. Consistent with these findings, CT26 cancer cells significantly increased LFA-1 expression in non-hypoxic avascular micrometastases at their earliest inception within hepatic lobules in vivo; and angiogenesis also markedly increased in both subcutaneous tumors and hepatic metastases produced by spheroid-derived CT26 cells. CONCLUSION: 3D-growth per se enriched the proangiogenic phenotype of cancer cells growing as multicellular spheroids or as subclinical hepatic micrometastases. The contribution of integrin LFA-1 to VEGF secretion via COX-2 was a micro environmental-related mechanism leading to the pro-angiogenic activation of soluble ICAM-1-activated colorectal carcinoma cells. This mechanism may represent a new target for specific therapeutic strategies designed to block colorectal cancer cell growth at a subclinical micrometastatic stage within the liver.


Subject(s)
Colorectal Neoplasms/blood supply , Liver Neoplasms/secondary , Lymphocyte Function-Associated Antigen-1/metabolism , Neovascularization, Pathologic/pathology , Spheroids, Cellular/pathology , Vascular Endothelial Growth Factor A/metabolism , Animals , Cell Proliferation/drug effects , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/pathology , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/pharmacology , Humans , Intercellular Adhesion Molecule-1/pharmacology , Male , Mice , Mice, Inbred BALB C , Neovascularization, Pathologic/enzymology , Phenotype , Recombinant Proteins/pharmacology , Solubility/drug effects , Spheroids, Cellular/drug effects , Spheroids, Cellular/enzymology , Tumor Cells, Cultured , Tumor Stem Cell Assay
18.
Cancer Metastasis Rev ; 25(3): 417-34, 2006 Sep.
Article in English | MEDLINE | ID: mdl-17001512

ABSTRACT

Interleukin-18 (IL-18, interferon [IFN]-gamma-inducing factor) is a proinflammatory cytokine converted to a biologically active molecule by interleukin (IL)-1beta converting enzyme (caspase-1). A wide range of normal and cancer cell types can produce and respond to IL-18 through a specific receptor (IL-18R) belonging to the toll-like receptor family. The activity of IL-18 is regulated by IL-18-binding protein (IL-18bp), a secreted protein possessing the ability to neutralize IL-18 and whose blood level is affected by renal function and is induced by IFNgamma. IL-18 plays a central role in inflammation and immune response, contributing to the pathogenesis and pathophysiology of infectious and inflammatory diseases. Because immune-stimulating effects of IL-18 have antineoplastic properties, IL-18 has been proposed as a novel adjuvant therapy against cancer. However, IL-18 increases in the blood of the majority of cancer patients and has been associated with disease progression and, in some cancer types, with metastatic recurrence risk and poor clinical outcome and survival. Under experimental conditions, cancer cells can also escape immune recognition, increase their adherence to the microvascular wall and even induce production of angiogenic and tumor growth-stimulating factors via IL-18-dependent mechanism. This is particularly visible in melanoma cells. Thus, the role of IL-18 in cancer progression and metastasis remains controversial. This review examines the clinical correlations and biological effects of IL-18 during cancer development and highlights recent experimental insights into prometastatic and proangiogenic effects of IL-18 and the use of IL-18bp against cancer progression.


Subject(s)
Interleukin-18/pharmacology , Interleukin-18/physiology , Neoplasms/immunology , Neoplasms/pathology , Tumor Escape , Animals , Cell Line, Tumor , Disease Progression , Humans , Interleukin-18/genetics , Mice , Neoplasms/blood supply , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology
19.
Cancer Res ; 64(1): 304-10, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-14729638

ABSTRACT

We investigated effects of endostatin (ES) in the prometastatic microenvironment of inflammation occurring during the microvascular phase of cancer cell infiltration in the liver. We used a model of intrasplenic injection of B16 melanoma (B16M) cells leading to hepatic metastasis through vascular cell adhesion molecule-(VCAM-1)-mediated capillary arrest of cancer cells via interleukin-18 (IL-18)-dependent mechanism. We show that administration of 50 mg/kg recombinant human (rh) ES 30 min before B16M, plus repetition of same dose for 3 additional days decreased metastasis number by 60%. A single dose of rhES before B16M injection reduced hepatic microvascular retention of luciferase-transfected B16M by 40% and inhibited hepatic production of tumor necrosis factor alpha (TNF-alpha) and IL-18 and VCAM-1 expression by hepatic sinusoidal endothelia (HSE). Consistent with these data, rhES inhibited VCAM-1-dependent B16M cell adhesion to primary cultured HSE receiving B16M conditioned medium, and it abolished the HSE cell production of TNF-alpha and IL-18 induced by tumor-derived vascular endothelial cell growth factor (VEGF). rhES abrogated recombinant murine VEGF-induced tyrosine phosphorylation of KDR/flk-1 receptor in HSE cells, preventing the proinflammatory action of tumor-derived VEGF on HSE. rhES also abolished hepatic production of TNF-alpha, microvascular retention of luciferase-transfected B16M, and adhesion of B16M cells to isolated HSE cells, all of them induced in mice given 5 micro g/kg recombinant murine VEGF for 18 h. This capillary inflammation-deactivating capability constitutes a nonantiangiogenic antitumoral action of endostatin that decreases cancer cell arrest within liver microvasculature and prevents metastases promoted by proinflammatory cytokines induced by VEGF.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Endostatins/pharmacology , Liver Neoplasms/blood supply , Liver Neoplasms/secondary , Melanoma, Experimental/blood supply , Microcirculation/drug effects , Animals , Disease Models, Animal , Humans , Liver Neoplasms/prevention & control , Male , Mice , Mice, Inbred C57BL , Recombinant Proteins/pharmacology , Tumor Cells, Cultured , Vascular Cell Adhesion Molecule-1/analysis
20.
Hepatology ; 37(3): 674-85, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12601365

ABSTRACT

Myofibroblasts infiltrate malignant liver tumors, although their pathogenic implications are unclear. Immunohistochemical detection of alpha-smooth muscle actin, glial fibrillary acidic protein (GFAP), and CD31 and CD34 expression was used to analyze the contribution of myofibroblasts to angiogenesis in hepatic metastasis produced by intrasplenically-injected B16 melanoma (B16M). Because activated hepatic stellate cells (HSCs) are oxygen-sensing myofibroblasts producing vascular endothelial growth factor (VEGF), the effect of B16M and human A375 melanoma supernatants on VEGF production by immortalized rat HSC line T6 and primary cultured human HSCs also was studied under an hypoxic atmosphere mimicking a tumor microenvironment. Myofibroblast infiltration preceded endothelium recruitment in avascular micrometastasis and generated specific stroma for sinusoidal-type and portal-type angiogeneses. Thereafter, myofibroblasts and endothelial cells colocalized within both angiogenic patterns and their numerical densities correlated with metastasis development. Myofibroblasts often were GFAP-positive, suggesting an HSC origin. Melanoma supernatants stimulated VEGF messenger RNA and protein synthesis by HSCs. These effects were potentiated by hypoxia. VEGF up-regulation was accompanied by increased expression of cyclooxygenase type 2 (COX-2) and PGE2 synthesis. HSC production of VEGF decreased under COX-2 inhibition, whereas it was increased by exogenous PGE2. The high VEGF expression in HSCs induced by melanoma factors and hypoxia resulted in mitogenic, antiapoptotic, and motogenic stimulation of both murine hepatic sinusoidal endothelium and human umbilical vein endothelium. In conclusion, temporal and positional relationships evolve between myofibroblast and endothelium recruitment during metastasis development. Mechanistically, hypoxic induction of VEGF in tumor-activated HSCs may create a proangiogenic microenvironment, facilitating endothelial cell recruitment and survival during hepatic metastasis transition from an avascular to a vascular stage.


Subject(s)
Liver Neoplasms/secondary , Liver/pathology , Melanoma, Experimental/pathology , Neovascularization, Pathologic , Animals , Apoptosis , Cell Division , Cell Hypoxia , Cell Line , Cell Movement , Cyclooxygenase 2 , Endothelial Growth Factors/analysis , Endothelial Growth Factors/pharmacology , Endothelium, Vascular/pathology , Glial Fibrillary Acidic Protein/analysis , Intercellular Signaling Peptides and Proteins/analysis , Intercellular Signaling Peptides and Proteins/pharmacology , Isoenzymes/analysis , Liver Neoplasms/pathology , Lymphokines/analysis , Lymphokines/pharmacology , Male , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Prostaglandin-Endoperoxide Synthases/analysis , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...