Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 3401, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37296132

ABSTRACT

While exploring the process of CO/CO2 electroreduction (COxRR) is of great significance to achieve carbon recycling, deciphering reaction mechanisms so as to further design catalytic systems able to overcome sluggish kinetics remains challenging. In this work, a model single-Co-atom catalyst with well-defined coordination structure is developed and employed as a platform to unravel the underlying reaction mechanism of COxRR. The as-prepared single-Co-atom catalyst exhibits a maximum methanol Faradaic efficiency as high as 65% at 30 mA/cm2 in a membrane electrode assembly electrolyzer, while on the contrary, the reduction pathway of CO2 to methanol is strongly decreased in CO2RR. In-situ X-ray absorption and Fourier-transform infrared spectroscopies point to a different adsorption configuration of *CO intermediate in CORR as compared to that in CO2RR, with a weaker stretching vibration of the C-O bond in the former case. Theoretical calculations further evidence the low energy barrier for the formation of a H-CoPc-CO- species, which is a critical factor in promoting the electrochemical reduction of CO to methanol.


Subject(s)
Carbon Dioxide , Methanol , Spectroscopy, Fourier Transform Infrared , Adsorption , Carbon
2.
Molecules ; 27(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36364349

ABSTRACT

Controlling and understanding the Cu-catalyzed homocoupling reaction is crucial to prompt the development of efficient Cu-catalyzed cross-coupling reactions. The presence of a coordinating base (hydroxide and methoxide) enables the B-to-Cu(II) transmetalation from aryl boronic acid to CuIICl2 in methanol, through the formation of mixed Cu-(µ-OH)-B intermediates. A second B-to-Cu transmetalation to form bis-aryl Cu(II) complexes is disfavored. Instead, organocopper(II) dimers undergo a coupled transmetalation-electron transfer (TET) allowing the formation of bis-organocopper(III) complexes readily promoting reductive elimination. Based on this mechanism some guidelines are suggested to control the undesired formation of homocoupling product in Cu-catalyzed cross-coupling reactions.


Subject(s)
Boronic Acids , Copper , Catalysis
4.
Chemistry ; 28(27): e202200697, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35267221

ABSTRACT

A long-time challenge in aqueous CO2 electrochemical reduction is to catalyze the formation of products beyond carbon monoxide with selectivity. Formaldehyde is the simplest of these products and one of the most relevant due to its broad use in the industry. Paradoxically it is one of the less reported product. Such scarcity may be in part explained by difficult identification and quantification using conventional chromatography or proton nuclear magnetic resonance techniques. Likewise, indirect detection methods are usually not compatible with labelled studies for asserting product origin. Recently, the possible production of formaldehyde during electrochemical reduction of carbon monoxide to methanol at cobalt phthalocyanine molecular catalyst in basic media has been the object of contradictory reports. By applying an analytical procedure based on proton NMR along with labelled studies, we provide definitive evidence for HCHO formation. We have further identified the possible scenarios for methanol formation through formaldehyde and revealed that the formation of the intermediate and its subsequent reduction are taking place at the same single active site. These studies open a new perspective to improve selectivity toward formaldehyde formation and to develop a subsequent chemistry based on reacting it with nucleophiles.


Subject(s)
Carbon Monoxide , Methanol , Carbon Dioxide/chemistry , Carbon Monoxide/chemistry , Formaldehyde/chemistry , Indoles , Methanol/chemistry , Organometallic Compounds , Protons
5.
Angew Chem Int Ed Engl ; 60(15): 8419-8424, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33448550

ABSTRACT

The synthesis of the first mesogenic donor-acceptor polyoxometalate (POM)-based hybrid is herein described. The structural and electronic properties of the hybrid compound were evaluated through combination of small- and wide-angle X-ray scattering, optical microscopy, electrochemistry and photoluminescence. In the solid state, the compound behaves as a birefringent solid, displaying a lamellar organization in which double-layers of POMs and bis(thiophene)thienothiophene organic donors alternate regularly. Noticeably, the sub-unit organizations in the composite are similar to that observed for the individual POM and organic donor precursors. Photophysical studies show that in the hybrid, the fluorescence of the organic donor unit is considerably quenched both in solution and in the solid state, which is attributed to occurrence of intramolecular charge-separated state.

6.
Org Lett ; 22(5): 1991-1996, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32073274

ABSTRACT

We demonstrate that tuning the reactivity of Cu by the choice of oxidation state and counterion leads to the activation of both "armed" and "disarmed" type glycals toward direct glycosylation leading to the α-stereoselective synthesis of deoxyglycosides in good to excellent yields. Mechanistic studies show that CuI is essential for effective catalysis and stereocontrol and that the reaction proceeds through dual activation of both the enol ether as well as the OH nucleophile.


Subject(s)
Copper/chemistry , Glycosides/chemical synthesis , Catalysis , Glycosides/chemistry , Glycosylation , Molecular Structure , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...