Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 276(44): 40834-40, 2001 Nov 02.
Article in English | MEDLINE | ID: mdl-11524424

ABSTRACT

ADP-glucose pyrophosphorylase (AGPase) is a key regulatory enzyme of bacterial glycogen and plant starch synthesis as it controls carbon flux via its allosteric regulatory behavior. Unlike the bacterial enzyme that is composed of a single subunit type, the plant AGPase is a heterotetrameric enzyme (alpha2beta2) with distinct roles for each subunit type. The large subunit (LS) is involved mainly in allosteric regulation through its interaction with the catalytic small subunit (SS). The LS modulates the catalytic activity of the SS by increasing the allosteric regulatory response of the hetero-oligomeric enzyme. To identify regions of the LS involved in binding of effector molecules, a reverse genetics approach was employed. A potato (Solanum tuberosum L.) AGPase LS down-regulatory mutant (E38A) was subjected to random mutagenesis using error-prone polymerase chain reaction and screened for the capacity to form an enzyme capable of restoring glycogen production in glgC(-) Escherichia coli. Dominant mutations were identified by their capacity to restore glycogen production when the LS containing only the second site mutations was co-expressed with the wild-type SS. Sequence analysis showed that most of the mutations were decidedly nonrandom and were clustered at conserved N- and C-terminal regions. Kinetic analysis of the dominant mutant enzymes indicated that the K(m) values for cofactor and substrates were comparable with the wild-type AGPase, whereas the affinities for activator and inhibitor were altered appreciably. These AGPase variants displayed increased resistance to P(i) inhibition and/or greater sensitivity toward 3-phosphoglyceric acid activation. Further studies of Lys-197, Pro-261, and Lys-420, residues conserved in AGPase sequences, by site-directed mutagenesis suggested that the effectors 3-phosphoglyceric acid and P(i) interact at two closely located binding sites.


Subject(s)
Nucleotidyltransferases/metabolism , Solanum tuberosum/enzymology , Allosteric Site , Amino Acid Sequence , Base Sequence , DNA Primers , Glucose-1-Phosphate Adenylyltransferase , Kinetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/genetics , Nucleotidyltransferases/isolation & purification , Phenotype , Protein Structure, Secondary , Sequence Homology, Amino Acid
2.
Biochem Biophys Res Commun ; 281(3): 783-7, 2001 Mar 02.
Article in English | MEDLINE | ID: mdl-11237727

ABSTRACT

ADP-glucose pyrophosphorylase (AGPase), a key regulatory enzyme in higher plant starch biosynthesis, is composed of a pair of large and small subunits (alpha(2)beta(2)). Current evidence suggests that the large subunit has primarily a regulatory function, while the small subunit has both regulatory and catalytic roles. To define the structure-function relationship of the large subunit (LS), the LS of potato AGPase was subjected to chemical mutagenesis and coexpressed with the wild-type (WT) small subunit (SS) cDNA in an AGPase defective Escherichia coli strain. An LS mutant (M143) was isolated, which accumulated very low levels of glycogen compared to the WT recombinant AGPase, but maintained normal catalytic activity when assayed under saturating conditions. Sequence analysis revealed that M143 has a single amino acid change, V463I, which lies adjacent to the C-terminus. This single mutation had no effect on the Km for ATP and Mg(2+), which were similar to the WT enzyme. The K(m) for glucose 1-P, however, was sixfold higher than the WT enzyme. These results suggest that the LS plays a role in binding glucose 1-P through its interaction with the SS.


Subject(s)
Nucleotidyltransferases/metabolism , Amino Acid Sequence , Catalysis , Electrophoresis, Polyacrylamide Gel , Glucose-1-Phosphate Adenylyltransferase , Mutagenesis , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/genetics , Nucleotidyltransferases/isolation & purification , Protein Binding , Sequence Homology, Amino Acid
3.
FEBS Lett ; 482(1-2): 113-8, 2000 Sep 29.
Article in English | MEDLINE | ID: mdl-11018533

ABSTRACT

ADP-glucose pyrophosphorylase (AGPase) is the allosterically regulated gateway for carbon entry into transient and storage starch in plants as well as glycogen in bacteria. This enzyme plays a key role in the modulation of photosynthetic efficiency in source tissues and directly determines the level of storage starch in sink tissues, thus influencing overall crop yield potential. AGPase is a tetrameric enzyme; in higher plants it consists of two regulatory large subunits (LS) and two catalytic small subunits (SS), while in cyanobacteria and prokaryotes the enzyme is homotetrameric. The potato SS gene in pML10 was mutated by hydroxylamine and mutants were screened for elevated homotetrameric activity by iodine vapor staining. This search strategy led to the isolation of SS mutants (SUP-1, TG-15) that had pyrophosphorylase activity in the absence of the LS. TG-15 has a leucine to phenylalanine change at position 48 (L(48)F) that corresponds to a phenylalanine residue at the analogous position in the Escherichia coli homotetrameric AGPase as well as a valine to isoleucine change at position 59 (V(59)I). TG-15 was partially purified and kinetic analysis revealed substrate and effector affinities equal to wild type heterotetrameric enzyme with the exception of ATP binding.


Subject(s)
Nucleotidyltransferases/chemistry , Nucleotidyltransferases/metabolism , Solanum tuberosum/enzymology , Amino Acid Sequence , Escherichia coli/enzymology , Glucose-1-Phosphate Adenylyltransferase , Kinetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Nucleotidyltransferases/genetics , Protein Subunits , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Solanum tuberosum/genetics , Substrate Specificity
4.
Appl Microbiol Biotechnol ; 48(3): 317-24, 1997 Sep.
Article in English | MEDLINE | ID: mdl-9352674

ABSTRACT

The extracellular metalloprotease (SMP 6.1) produced by a soil isolate of Serratia marcescens NRRL B-23112 was purified and characterized. SMP 6.1 was purified from the culture supernatant by ammonium sulfate precipitation, acetone fractional precipitation, and preparative isoelectric focusing. SMP 6.1 has a molecular mass of approximately 50,900 Da by sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE). The following substrates were hydrolyzed: casein, bovine serum albumin, and hide powder. SMP 6.1 has the characteristics of a metalloprotease, a pH optimum of 10.0, and a temperature optimum of 42 degrees C. The isoelectric point of the protease is 6.1. Restoration of proteolytic activity by in-gel renaturation after SDS-PAGE indicates a single polypeptide chain. SMP 6.1 is inhibited by EDTA (9 micrograms/ml) and not inhibited by antipain dihydrochloride (120 micrograms/ml), aprotinin (4 micrograms/ml), bestatin (80 micrograms/ml), chymostatin (50 micrograms/ml), E-64 (20 micrograms/ml), leupeptin (4 micrograms/ml), Pefabloc SC (2000 micrograms/ml), pepstatin (4 micrograms/ml), phosphoramidon (660 micrograms/ml), or phenylmethylsulfonyl fluoride (400 micrograms/ml). SMP 6.1 retains full activity in the presence of SDS (1% w/v), Tween-20 (1% w/v), Triton X-100 (1% w/v), ethanol (5% v/v), and 2-mercaptoethanol (0.5% v/v). The extracellular metalloprotease SMP 6.1 differs from the serratiopeptidase (Sigma) produced by S. marcescens ATCC 27117 in the following characteristics: isoelectric point, peptide mapping and nematolytic properties.


Subject(s)
Metalloendopeptidases/isolation & purification , Serratia marcescens/enzymology , Enzyme Stability , Hydrogen-Ion Concentration , Metalloendopeptidases/metabolism , Molecular Weight , Peptide Mapping , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL