Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; : e0120924, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860764

ABSTRACT

Mammalian AIM-2-like receptor (ALR) proteins bind nucleic acids and initiate production of type I interferons or inflammasome assembly, thereby contributing to host innate immunity. In mice, the Alr locus is highly polymorphic at the sequence and copy number level, and we show here that it is one of the most dynamic regions of the genome. One rapidly evolving gene within this region, Ifi207, was introduced to the Mus genome by gene conversion or an unequal recombination event a few million years ago. Ifi207 has a large, distinctive repeat region that differs in sequence and length among Mus species and even closely related inbred Mus musculus strains. We show that IFI207 controls murine leukemia virus (MLV) infection in vivo and that it plays a role in the STING-mediated response to cGAMP, dsDNA, DMXXA, and MLV. IFI207 binds to STING, and inclusion of its repeat region appears to stabilize STING protein. The Alr locus and Ifi207 provide a clear example of the evolutionary innovation of gene function, possibly as a result of host-pathogen co-evolution.IMPORTANCEThe Red Queen hypothesis predicts that the arms race between pathogens and the host may accelerate evolution of both sides, and therefore causes higher diversity in virulence factors and immune-related proteins, respectively . The Alr gene family in mice has undergone rapid evolution in the last few million years and includes the creation of two novel members, MndaL and Ifi207. Ifi207, in particular, became highly divergent, with significant genetic changes between highly related inbred mice. IFI207 protein acts in the STING pathway and contributes to anti-retroviral resistance via a novel mechanism. The data show that under the pressure of host-pathogen coevolution in a dynamic locus, gene conversion and recombination between gene family members creates new genes with novel and essential functions that play diverse roles in biological processes.

2.
Cell Rep ; 43(7): 114388, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38935497

ABSTRACT

In contrast to most hematopoietic lineages, megakaryocytes (MKs) can derive rapidly and directly from hematopoietic stem cells (HSCs). The underlying mechanism is unclear, however. Here, we show that DNA damage induces MK markers in HSCs and that G2 arrest, an integral part of the DNA damage response, suffices for MK priming followed by irreversible MK differentiation in HSCs, but not in progenitors. We also show that replication stress causes DNA damage in HSCs and is at least in part due to uracil misincorporation in vitro and in vivo. Consistent with this notion, thymidine attenuated DNA damage, improved HSC maintenance, and reduced the generation of CD41+ MK-committed HSCs. Replication stress and concomitant MK differentiation is therefore one of the barriers to HSC maintenance. DNA damage-induced MK priming may allow rapid generation of a lineage essential to immediate organismal survival, while also removing damaged cells from the HSC pool.

3.
PLoS Pathog ; 20(1): e1011640, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38215165

ABSTRACT

Retroviral reverse transcription starts within the capsid and uncoating and reverse transcription are mutually dependent. There is still debate regarding the timing and cellular location of HIV's uncoating and reverse transcription and whether it occurs solely in the cytoplasm, nucleus or both. HIV can infect non-dividing cells because there is active transport of the preintegration complex (PIC) across the nuclear membrane, but Murine Leukemia Virus (MLV) is thought to depend on cell division for replication and whether MLV uncoating and reverse transcription is solely cytoplasmic has not been studied. Here, we used NIH3T3 and primary mouse dendritic cells to determine where the different stages of reverse transcription occur and whether cell division is needed for nuclear entry. Our data strongly suggest that in both NIH3T3 cells and dendritic cells (DCs), the initial step of reverse transcription occurs in the cytoplasm. However, we detected MLV RNA/DNA hybrid intermediates in the nucleus of dividing NIH3T3 cells and non-dividing DCs, suggesting that reverse transcription can continue after nuclear entry. We also confirmed that the MLV PIC requires cell division to enter the nucleus of NIH3T3 cells. In contrast, we show that MLV can infect non-dividing primary DCs, although integration of MLV DNA in DCs still required the viral p12 protein. Knockdown of several nuclear pore proteins dramatically reduced the appearance of integrated MLV DNA in DCs but not NIH3T3 cells. Additionally, MLV capsid associated with the nuclear pore proteins NUP358 and NUP62 during infection. These findings suggest that simple retroviruses, like the complex retrovirus HIV, gain nuclear entry by traversing the nuclear pore complex in non-mitotic cells.


Subject(s)
HIV Infections , Nuclear Pore Complex Proteins , Animals , Mice , Nuclear Pore Complex Proteins/genetics , NIH 3T3 Cells , Leukemia Virus, Murine/genetics , Viral Proteins , Capsid Proteins , Retroviridae , DNA , Dendritic Cells
4.
bioRxiv ; 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37333356

ABSTRACT

Hematopoietic stem cells (HSCs) reside in the bone marrow (BM), can self-renew, and generate all cells of the hematopoietic system. 1 Most hematopoietic lineages arise through successive, increasingly lineage-committed progenitors. In contrast, megakaryocytes (MKs), hyperploid cells that generate platelets essential to hemostasis, can derive rapidly and directly from HSCs. 2 The underlying mechanism is unknown however. Here we show that DNA damage and subsequent arrest in the G2 phase of the cell cycle rapidly induce MK commitment specifically in HSCs, but not in progenitors, through an initially predominantly post-transcriptional mechanism. Cycling HSCs show extensive replication-induced DNA damage associated with uracil misincorporation in vivo and in vitro . Consistent with this notion, thymidine attenuated DNA damage, rescued HSC maintenance and reduced the generation of CD41 + MK-committed HSCs in vitro . Similarly, overexpression of the dUTP-scavenging enzyme, dUTPase, enhanced in vitro maintenance of HSCs. We conclude that a DNA damage response drives direct megakaryopoiesis and that replication stress-induced direct megakaryopoiesis, at least in part caused by uracil misincorporation, is a barrier to HSC maintenance in vitro . DNA damage-induced direct megakaryopoiesis may allow rapid generation of a lineage essential to immediate organismal survival, while simultaneously removing damaged HSCs and potentially avoiding malignant transformation of self-renewing stem cells.

5.
bioRxiv ; 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36711784

ABSTRACT

Mammalian ALR proteins bind nucleic acids and initiate production of type I interferons or inflammasome assembly, thereby contributing to host innate immunity. ALR s are encoded at a single genetic locus. In mice, the Alr locus is highly polymorphic at the sequence and copy number level. We suggest that one rapidly evolving member of the Alr family, Ifi207 , was introduced to the Mus genome by a recent recombination event. Ifi207 has a large, distinctive repeat region that differs in sequence and length in different Mus strains. We show that IFI207 plays a key role in the STING-mediated response to cGAMP, DNA, and MLV, and that IFI207 controls MLV infection in vivo. Uniquely, IFI207 acts by stabilizing STING protein via its repeat region. Our studies suggest that under the pressure of host-pathogen coevolution, in a dynamic locus such as the Alr , recombination between gene family members creates new genes with novel and essential functions that play diverse roles in biological processes.

6.
J Virol ; 95(22): e0124421, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34468176

ABSTRACT

Apolipoprotein B mRNA editing enzyme catalytic subunit 3 (APOBEC3) proteins are critical for the control of infection by retroviruses. These proteins deaminate cytidines in negative-strand DNA during reverse transcription, leading to G-to-A changes in coding strands. Uracil DNA glycosylase (UNG) is a host enzyme that excises uracils in genomic DNA, which the base excision repair machinery then repairs. Whether UNG removes uracils found in retroviral DNA after APOBEC3-mediated mutation is not clear, and whether this occurs in vivo has not been demonstrated. To determine if UNG plays a role in the repair of retroviral DNA, we used APOBEC3G (A3G) transgenic mice which we showed previously had extensive deamination of murine leukemia virus (MLV) proviruses. The A3G transgene was crossed onto an Ung and mouse Apobec3 knockout background (UNG-/-APO-/-), and the mice were infected with MLV. We found that virus infection levels were decreased in A3G UNG-/-APO-/- compared with A3G APO-/- mice. Deep sequencing of the proviruses showed that there were significantly higher levels of G-to-A mutations in proviral DNA from A3G transgenic UNG-/-APO-/- than A3G transgenic APO-/- mice, suggesting that UNG plays a role in the repair of uracil-containing proviruses. In in vitro studies, we found that cytoplasmic viral DNA deaminated by APOBEC3G was uracilated. In the absence of UNG, the uracil-containing proviruses integrated at higher levels into the genome than those made in the presence of UNG. Thus, UNG also functions in the nucleus prior to integration by nicking uracil-containing viral DNA, thereby blocking integration. These data show that UNG plays a critical role in the repair of the damage inflicted by APOBEC3 deamination of reverse-transcribed DNA. IMPORTANCE While APOBEC3-mediated mutation of retroviruses is well-established, what role the host base excision repair enzymes play in correcting these mutations is not clear. This question is especially difficult to address in vivo. Here, we use a transgenic mouse developed by our lab that expresses human APOBEC3G and also lacks the endogenous uracil DNA glycosylase (Ung) gene and show that UNG removes uracils introduced by this cytidine deaminase in MLV reverse transcripts, thereby reducing G-to-A mutations in proviruses. Furthermore, our data suggest that UNG removes uracils at two stages in infection-first, in unintegrated nuclear viral reverse-transcribed DNA, resulting in its degradation; and second, in integrated proviruses, resulting in their repair. These data suggest that retroviruses damaged by host cytidine deaminases take advantage of the host DNA repair system to overcome this damage.


Subject(s)
APOBEC-3G Deaminase/immunology , DNA, Viral/immunology , Retroviridae Infections , Retroviridae , Uracil-DNA Glycosidase/immunology , Animals , DNA Repair , HEK293 Cells , Humans , Mice , Mice, Knockout , NIH 3T3 Cells , Retroviridae/genetics , Retroviridae/immunology , Retroviridae Infections/immunology , Retroviridae Infections/virology
7.
PLoS Pathog ; 17(6): e1009662, 2021 06.
Article in English | MEDLINE | ID: mdl-34097709

ABSTRACT

Signal-regulatory protein alpha (SIRPA) is a well-known inhibitor of phagocytosis when it complexes with CD47 expressed on target cells. Here we show that SIRPA decreased in vitro infection by a number of pathogenic viruses, including New World and Old World arenaviruses, Zika virus, vesicular stomatitis virus and pseudoviruses bearing the Machupo virus, Ebola virus and SARS-CoV-2 glycoproteins, but not HSV-1, MLV or mNoV. Moreover, mice with targeted mutation of the Sirpa gene that renders it non-functional were more susceptible to infection with the New World arenaviruses Junín virus vaccine strain Candid 1 and Tacaribe virus, but not MLV or mNoV. All SIRPA-inhibited viruses have in common the requirement for trafficking to a low pH endosomal compartment. This was clearly demonstrated with SARS-CoV-2 pseudovirus, which was only inhibited by SIRPA in cells in which it required trafficking to the endosome. Similar to its role in phagocytosis inhibition, SIRPA decreased virus internalization but not binding to cell surface receptors. We also found that increasing SIRPA levels via treatment with IL-4 led to even greater anti-viral activity. These data suggest that enhancing SIRPA's activity could be a target for anti-viral therapies.


Subject(s)
Endocytosis , RNA Viruses/immunology , Receptors, Immunologic/physiology , Virus Internalization , Animals , Antiviral Agents/pharmacology , Cell Line , Cell Membrane/virology , Chlorocebus aethiops , Drug Delivery Systems , Integrins/immunology , Interleukin-4/pharmacology , Mice , Mice, Knockout , Protein Domains , Receptors, Immunologic/genetics , Vero Cells
8.
Viruses ; 12(11)2020 10 27.
Article in English | MEDLINE | ID: mdl-33121095

ABSTRACT

Apolipoprotein B mRNA editing enzyme, catalytic peptide 3 (APOBEC3) proteins are critical host proteins that counteract and prevent the replication of retroviruses. Unlike the genome of humans and other species, the mouse genome encodes a single Apobec3 gene, which has undergone positive selection, as reflected by the allelic variants found in different inbred mouse strains. This positive selection was likely due to infection by various mouse retroviruses, which have persisted in their hosts for millions of years. While mouse retroviruses are inhibited by APOBEC3, they nonetheless still remain infectious, likely due to the actions of different viral proteins that counteract this host factor. The study of viruses in their natural hosts provides important insight into their co-evolution.


Subject(s)
Cytidine Deaminase/genetics , Host-Pathogen Interactions/genetics , Retroviridae Infections/virology , Retroviridae/pathogenicity , Animals , Leukemia Virus, Murine/pathogenicity , Mammary Tumor Virus, Mouse/pathogenicity , Mice , Tumor Virus Infections/virology , Virus Replication
9.
J Virol ; 93(20)2019 10 15.
Article in English | MEDLINE | ID: mdl-31341050

ABSTRACT

Endogenous retroviruses (ERV) are found throughout vertebrate genomes, and failure to silence their activation can have deleterious consequences on the host. Mutation and subsequent disruption of ERV loci is therefore an indispensable component of the cell-intrinsic defenses that maintain the integrity of the host genome. Abundant in vitro and in silico evidence have revealed that APOBEC3 cytidine-deaminases, including human APOBEC3G (hA3G), can potently restrict retrotransposition; yet, in vivo data demonstrating such activity is lacking, since no replication-competent human ERV have been identified. In mice deficient for Toll-like receptor 7 (TLR7), transcribed ERV loci can recombine and generate infectious ERV. In this study, we show that ectopic expression of hA3G can prevent the emergence of replication-competent, infectious ERV in Tlr7-/- mice. Mice encode one copy of Apobec3 in their genome. ERV reactivation in Tlr7-/- mice was comparable in the presence or absence of Apobec3 In contrast, expression of a human APOBEC3G transgene abrogated emergence of infectious ERV in the Tlr7-/- background. No ERV RNA was detected in the plasma of hA3G+Apobec3-/-Tlr7-/- mice, and infectious ERV virions could not be amplified through coculture with permissive cells. These data reveal that hA3G can potently restrict active ERV in vivo and suggest that expansion of the APOBEC3 locus in primates may have helped to provide for the continued restraint of ERV in the human genome.IMPORTANCE Although APOBEC3 proteins are known to be important antiviral restriction factors in both mice and humans, their roles in the restriction of endogenous retroviruses (ERV) have been limited to in vitro studies. Here, we report that human APOBEC3G expressed as a transgene in mice prevents the emergence of infectious ERV from endogenous loci. This study reveals that APOBEC3G can powerfully restrict active retrotransposons in vivo and demonstrates how transgenic mice can be used to investigate host mechanisms that inhibit retrotransposons and reinforce genomic integrity.


Subject(s)
APOBEC-3G Deaminase/metabolism , Endogenous Retroviruses/physiology , Retroviridae Infections/metabolism , Retroviridae Infections/virology , Virus Replication , Animals , Gene Dosage , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Immunity, Innate , Mice , Mice, Knockout , Open Reading Frames , Retroviridae Infections/immunology , Toll-Like Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...