Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
PLOS Digit Health ; 2(11): e0000389, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38033170

ABSTRACT

Nutrition is a key contributor to health. Recently, several studies have identified associations between factors such as microbiota composition and health-related responses to dietary intake, raising the potential of personalized nutritional recommendations. To further our understanding of personalized nutrition, detailed individual data must be collected from participants in their day-to-day lives. However, this is challenging in conventional studies that require clinical measurements and site visits. So-called digital or remote cohorts allow in situ data collection on a daily basis through mobile applications, online services, and wearable sensors, but they raise questions about study retention and data quality. "Food & You" is a personalized nutrition study implemented as a digital cohort in which participants track food intake, physical activity, gut microbiota, glycemia, and other data for two to four weeks. Here, we describe the study protocol, report on study completion rates, and describe the collected data, focusing on assessing their quality and reliability. Overall, the study collected data from over 1000 participants, including high-resolution data of nutritional intake of more than 46 million kcal collected from 315,126 dishes over 23,335 participant days, 1,470,030 blood glucose measurements, 49,110 survey responses, and 1,024 stool samples for gut microbiota analysis. Retention was high, with over 60% of the enrolled participants completing the study. Various data quality assessment efforts suggest the captured high-resolution nutritional data accurately reflect individual diet patterns, paving the way for digital cohorts as a typical study design for personalized nutrition.

2.
Avian Dis ; 61(2): 153-164, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28665725

ABSTRACT

Marek's disease virus is a herpesvirus of chickens that costs the worldwide poultry industry more than US$1 billion annually. Two generations of Marek's disease vaccines have shown reduced efficacy over the last half century due to evolution of the virus. Understanding where the virus is present may give insight into whether continued reductions in efficacy are likely. We conducted a 3-yr surveillance study to assess the prevalence of Marek's disease virus on commercial poultry farms, determine the effect of various factors on virus prevalence, and document virus dynamics in broiler chicken houses over short (weeks) and long (years) timescales. We extracted DNA from dust samples collected from commercial chicken and egg production facilities in Pennsylvania, USA. Quantitative PCR was used to assess wild-type virus detectability and concentration. Using data from 1018 dust samples with Bayesian generalized linear mixed effects models, we determined the factors that correlated with virus prevalence across farms. Maximum likelihood and autocorrelation function estimation on 3727 additional dust samples were used to document and characterize virus concentrations within houses over time. Overall, wild-type virus was detectable at least once on 36 of 104 farms at rates that varied substantially between farms. Virus was detected in one of three broiler-breeder operations (companies), four of five broiler operations, and three of five egg layer operations. Marek's disease virus detectability differed by production type, bird age, day of the year, operation (company), farm, house, flock, and sample. Operation (company) was the most important factor, accounting for between 12% and 63.4% of the variation in virus detectability. Within individual houses, virus concentration often dropped below detectable levels and reemerged later. These data characterize Marek's disease virus dynamics, which are potentially important to the evolution of the virus.


Subject(s)
Herpesvirus 2, Gallid/isolation & purification , Marek Disease/virology , Poultry Diseases/virology , Sentinel Surveillance/veterinary , Animal Husbandry/economics , Animals , Chickens , Farms , Genotype , Herpesvirus 2, Gallid/classification , Herpesvirus 2, Gallid/genetics , Marek Disease/economics , Marek Disease/epidemiology , Pennsylvania , Poultry Diseases/economics , Poultry Diseases/epidemiology
3.
PLoS Pathog ; 10(4): e1004019, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24763470

ABSTRACT

The evolution of drug resistance, a key challenge for our ability to treat and control infections, depends on two processes: de-novo resistance mutations, and the selection for and spread of resistant mutants within a population. Understanding the factors influencing the rates of these two processes is essential for maximizing the useful lifespan of drugs and, therefore, effective disease control. For malaria parasites, artemisinin-based drugs are the frontline weapons in the fight against disease, but reports from the field of slower parasite clearance rates during drug treatment are generating concern that the useful lifespan of these drugs may be limited. Whether slower clearance rates represent true resistance, and how this provides a selective advantage for parasites is uncertain. Here, we show that Plasmodium chabaudi malaria parasites selected for resistance to artesunate (an artemisinin derivative) through a step-wise increase in drug dose evolved slower clearance rates extremely rapidly. In single infections, these slower clearance rates, similar to those seen in the field, provided fitness advantages to the parasite through increased overall density, recrudescence after treatment and increased transmission potential. In mixed infections, removal of susceptible parasites by drug treatment led to substantial increases in the densities and transmission potential of resistant parasites (competitive release). Our results demonstrate the double-edged sword for resistance management: in our initial selection experiments, no parasites survived aggressive chemotherapy, but after selection, the fitness advantage for resistant parasites was greatest at high drug doses. Aggressive treatment of mixed infections resulted in resistant parasites dominating the pool of gametocytes, without providing additional health benefits to hosts. Slower clearance rates can evolve rapidly and can provide a strong fitness advantage during drug treatment in both single and mixed strain infections.


Subject(s)
Adaptation, Physiological/drug effects , Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance/drug effects , Malaria/transmission , Plasmodium chabaudi , Animals , Artesunate , Dose-Response Relationship, Drug , Malaria/pathology , Mice , Plasmodium chabaudi/pathogenicity , Plasmodium chabaudi/physiology
4.
BMC Evol Biol ; 12: 189, 2012 Sep 25.
Article in English | MEDLINE | ID: mdl-23006795

ABSTRACT

BACKGROUND: Osedax worms use a proliferative root system to extract nutrients from the bones of sunken vertebrate carcasses. The roots contain bacterial endosymbionts that contribute to the nutrition of these mouthless and gutless worms. The worms acquire these essential endosymbionts locally from the environment in which their larvae settle. Here we report on the temporal dynamics of endosymbiont diversity hosted by nine Osedax species sampled during a three-year investigation of an experimental whale fall at 1820-m depth in the Monterey Bay, California. The host species were identified by their unique mitochondrial COI haplotypes. The endosymbionts were identified by ribotyping with PCR primers specifically designed to target Oceanospirillales. RESULTS: Thirty-two endosymbiont ribotypes associated with these worms clustered into two distinct bacterial ribospecies that together comprise a monophyletic group, mostly restricted to deep waters (>1000 m). Statistical analyses confirmed significant changes in the relative abundances of host species and the two dominant endosymbiont ribospecies during the three-year sampling period. Bone type (whale vs. cow) also had a significant effect on host species, but not on the two dominant symbiont ribospecies. No statistically significant association existed between the host species and endosymbiont ribospecies. CONCLUSIONS: Standard PCR and direct sequencing proved to be an efficient method for ribotyping the numerically dominant endosymbiont strains infecting a large sample of host individuals; however, this method did not adequately represent the frequency of mixed infections, which appears to be the rule rather than an exception for Osedax individuals. Through cloning and the use of experimental dilution series, we determined that minority ribotypes constituting less than 30% of a mixture would not likely be detected, leading to underestimates of the frequency of multiple infections in host individuals.


Subject(s)
Gammaproteobacteria/genetics , Genetic Variation , Polychaeta/genetics , Symbiosis/genetics , Animals , Bayes Theorem , Bone and Bones/parasitology , Cattle , Electron Transport Complex IV/genetics , Gammaproteobacteria/classification , Gammaproteobacteria/physiology , Gene Frequency , Haplotypes , Host Specificity/genetics , Host-Parasite Interactions , Molecular Sequence Data , Phylogeny , Polychaeta/microbiology , Polychaeta/physiology , RNA, Ribosomal, 16S/genetics , Ribotyping , Seasons , Sequence Analysis, DNA , Species Specificity , Time Factors , Whales
5.
PLoS One ; 6(8): e22054, 2011.
Article in English | MEDLINE | ID: mdl-21853023

ABSTRACT

The genotypic structure of parasite populations is an important determinant of ecological and evolutionary dynamics of host-parasite interactions with consequences for pest management and disease control. Genotypic structure is especially interesting where multiple hosts co-exist and share parasites. We here analyze the natural genotypic distribution of Crithidia bombi, a trypanosomatid parasite of bumblebees (Bombus spp.), in two ecologically different habitats over a time period of three years. Using an algorithm to reconstruct genotypes in cases of multiple infections, and combining these with directly identified genotypes from single infections, we find a striking diversity of infection for both data sets, with almost all multi-locus genotypes being unique, and are inferring that around half of the total infections are resulting from multiple strains. Our analyses further suggest a mixture of clonality and sexuality in natural populations of this parasite species. Finally, we ask whether parasite genotypes are associated with host species (the phylogenetic hypothesis) or whether ecological factors (niche overlap in flower choice) shape the distribution of parasite genotypes (the ecological hypothesis). Redundancy analysis demonstrates that in the region with relatively high parasite prevalence, both host species identity and niche overlap are equally important factors shaping the distribution of parasite strains, whereas in the region with lower parasite prevalence, niche overlap more strongly contributes to the distribution observed. Overall, our study underlines the importance of ecological factors in shaping the natural dynamics of host-parasite systems.


Subject(s)
Bees/parasitology , Crithidia/genetics , Ecosystem , Host-Parasite Interactions/genetics , Parasites/genetics , Alleles , Animals , Genetics, Population , Genotype , Genotyping Techniques , Markov Chains , Microsatellite Repeats/genetics , Multilocus Sequence Typing , Phylogeny , Sample Size
SELECTION OF CITATIONS
SEARCH DETAIL