Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 299(10): 105201, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37660915

ABSTRACT

In this study, we investigated the S-acylation of two host cell proteins important for viral infection: TMPRSS2 (transmembrane serine protease 2), which cleaves severe acute respiratory syndrome coronavirus 2 spike to facilitate viral entry, and bone marrow stromal antigen 2, a general viral restriction factor. We found that both proteins were S-acylated by zDHHC6, an S-acyltransferase enzyme localized at the endoplasmic reticulum, in coexpression experiments. Mutagenic analysis revealed that zDHHC6 modifies a single cysteine in each protein, which are in proximity to the transmembrane domains (TMDs). For TMPRSS2, the modified cysteine is positioned two residues into the TMD, whereas the modified cysteine in bone marrow stromal antigen 2 has a cytosolic location two amino acids upstream of the TMD. Cysteine swapping revealed that repositioning the target cysteine of TMPRSS2 further into the TMD substantially reduced S-acylation by zDHHC6. Interestingly, zDHHC6 efficiently S-acylated truncated forms of these proteins that contained only the TMDs and short juxtamembrane regions. The ability of zDHHC6 to modify short TMD sequences was also seen for the transferrin receptor (another type II membrane protein) and for five different type I membrane protein constructs, including cluster of differentiation 4. Collectively, the results of this study show that zDHHC6 can modify diverse membrane proteins (type I and II) and requires only the presence of the TMD and target cysteine for efficient S-acylation. Thus, zDHHC6 may be a broad specificity S-acyltransferase specialized for the modification of a diverse set of transmembrane proteins at the endoplasmic reticulum.

2.
J Biol Chem ; 299(1): 102754, 2023 01.
Article in English | MEDLINE | ID: mdl-36442513

ABSTRACT

S-acylation is an essential post-translational modification, which is mediated by a family of 23 zDHHC enzymes in humans. Several thousand proteins are modified by S-acylation; however, we lack a detailed understanding of how enzyme-substrate recognition and specificity is achieved. Previous work showed that the ankyrin repeat domain of zDHHC17 (ANK17) recognizes a short linear motif, known as the zDHHC ANK binding motif (zDABM) in substrate protein SNAP25, as a mechanism of substrate recruitment prior to S-acylation. Here, we investigated the S-acylation of the Sprouty and SPRED family of proteins by zDHHC17. Interestingly, although Sprouty-2 (Spry2) contains a zDABM that interacts with ANK17, this mode of binding is dispensable for S-acylation, and indeed removal of the zDABM does not completely ablate binding to zDHHC17. Furthermore, the related SPRED3 protein interacts with and is efficiently S-acylated by zDHHC17, despite lacking a zDABM. We undertook mutational analysis of SPRED3 to better understand the basis of its zDABM-independent interaction with zDHHC17. This analysis found that the cysteine-rich SPR domain of SPRED3, which is the defining feature of all Sprouty and SPRED proteins, interacts with zDHHC17. Surprisingly, the interaction with SPRED3 was independent of ANK17. Our mutational analysis of Spry2 was consistent with the SPR domain of this protein containing a zDHHC17-binding site, and Spry2 also showed detectable binding to a zDHHC17 mutant lacking the ANK domain. Thus, zDHHC17 can recognize its substrates through zDABM-dependent and/or zDABM-independent mechanisms, and some substrates display more than one mode of binding to this enzyme.


Subject(s)
Acyltransferases , Membrane Proteins , Animals , Humans , Mice , Rats , Acylation , Acyltransferases/genetics , Acyltransferases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Ankyrin Repeat , Binding Sites , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism
3.
J Biol Chem ; 298(10): 102469, 2022 10.
Article in English | MEDLINE | ID: mdl-36087837

ABSTRACT

Protein S-acylation is a reversible post-translational modification that modulates the localization and function of many cellular proteins. S-acylation is mediated by a family of zinc finger DHHC (Asp-His-His-Cys) domain-containing (zDHHC) proteins encoded by 23 distinct ZDHHC genes in the human genome. These enzymes catalyze S-acylation in a two-step process involving "autoacylation" of the cysteine residue in the catalytic DHHC motif followed by transfer of the acyl chain to a substrate cysteine. S-acylation is essential for many fundamental physiological processes, and there is growing interest in zDHHC enzymes as novel drug targets for a range of disorders. However, there is currently a lack of chemical modulators of S-acylation either for use as tool compounds or for potential development for therapeutic purposes. Here, we developed and implemented a novel FRET-based high-throughput assay for the discovery of compounds that interfere with autoacylation of zDHHC2, an enzyme that is implicated in neuronal S-acylation pathways. Our screen of >350,000 compounds identified two related tetrazole-containing compounds (TTZ-1 and TTZ-2) that inhibited both zDHHC2 autoacylation and substrate S-acylation in cell-free systems. These compounds were also active in human embryonic kidney 293T cells, where they inhibited the S-acylation of two substrates (SNAP25 and PSD95 [postsynaptic density protein 95]) mediated by different zDHHC enzymes, with some apparent isoform selectivity. Furthermore, we confirmed activity of the hit compounds through resynthesis, which provided sufficient quantities of material for further investigations. The assays developed provide novel strategies to screen for zDHHC inhibitors, and the identified compounds add to the chemical toolbox for interrogating cellular activities of zDHHC enzymes in S-acylation.


Subject(s)
Acyltransferases , Cysteine , Drug Discovery , Humans , Acylation/drug effects , Acyltransferases/antagonists & inhibitors , Acyltransferases/metabolism , Cysteine/metabolism , Lipoylation , Zinc Fingers
5.
J Cell Sci ; 133(22)2020 11 17.
Article in English | MEDLINE | ID: mdl-33203738

ABSTRACT

Almost two decades have passed since seminal work in Saccharomyces cerevisiae identified zinc finger DHHC domain-containing (zDHHC) enzymes as S-acyltransferases. These enzymes are ubiquitous in the eukarya domain, with 23 distinct zDHHC-encoding genes in the human genome. zDHHC enzymes mediate the bulk of S-acylation (also known as palmitoylation) reactions in cells, transferring acyl chains to cysteine thiolates, and in so-doing affecting the stability, localisation and function of several thousand proteins. Studies using purified components have shown that the minimal requirements for S-acylation are an appropriate zDHHC enzyme-substrate pair and fatty acyl-CoA. However, additional proteins including GCP16 (also known as Golga7), Golga7b, huntingtin and selenoprotein K, have been suggested to regulate the activity, stability and trafficking of certain zDHHC enzymes. In this Review, we discuss the role of these accessory proteins as essential components of the cellular S-acylation system.


Subject(s)
Acyltransferases , Lipoylation , Acylation , Acyltransferases/genetics , Acyltransferases/metabolism , Humans , Zinc Fingers
6.
J Cell Sci ; 133(21)2020 11 05.
Article in English | MEDLINE | ID: mdl-33037124

ABSTRACT

Sprouty-2 is an important regulator of growth factor signalling and a tumour suppressor protein. The defining feature of this protein is a cysteine-rich domain (CRD) that contains twenty-six cysteine residues and is modified by S-acylation. In this study, we show that the CRD of sprouty-2 is differentially modified by S-acyltransferase enzymes. The high specificity/low activity zDHHC17 enzyme mediated restricted S-acylation of sprouty-2, and cysteine-265 and -268 were identified as key targets of this enzyme. In contrast, the low specificity/high activity zDHHC3 and zDHHC7 enzymes mediated more expansive modification of the sprouty-2 CRD. Nevertheless, S-acylation by all enzymes enhanced sprouty-2 expression, suggesting that S-acylation stabilises this protein. In addition, we identified two charged residues (aspartate-214 and lysine-223), present on opposite faces of a predicted α-helix in the CRD, which are essential for S-acylation of sprouty-2. Interestingly, mutations that perturbed S-acylation also led to a loss of plasma membrane localisation of sprouty-2 in PC12 cells. This study provides insight into the mechanisms and outcomes of sprouty-2 S-acylation, and highlights distinct patterns of S-acylation mediated by different classes of zDHHC enzymes.


Subject(s)
Acyltransferases , Cysteine , Nerve Tissue Proteins/metabolism , Acylation , Acyltransferases/genetics , Acyltransferases/metabolism , Animals , Cell Membrane/metabolism , Cysteine/genetics , Cysteine/metabolism , Rats
7.
J Biol Chem ; 295(21): 7501-7515, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32317281

ABSTRACT

S-Acylation of the SNARE protein SNAP25 (synaptosome-associated protein of 25 kDa) is mediated by a subset of Golgi zinc finger DHHC-type palmitoyltransferase (zDHHC) enzymes, particularly zDHHC17. The ankyrin repeat domain of zDHHC17 interacts with a short linear motif known as the zDHHC ankyrin repeat-binding motif (zDABM) in SNAP25 (112VVASQP117), which is downstream of its S-acylated, cysteine-rich domain (85CGLCVCPC92). Here, we investigated the importance of a flexible linker region (amino acids 93-111, referred to hereafter as the "mini-linker" region) that separates the zDABM and S-acylated cysteines in SNAP25. Shortening the mini-linker did not affect the SNAP25-zDHHC17 interaction but blocked S-acylation. Insertion of additional flexible glycine-serine repeats had no effect on S-acylation, but extended and rigid alanine-proline repeats perturbed it. A SNAP25 mutant in which the mini-linker region was substituted with a flexible glycine-serine linker of the same length underwent efficient S-acylation. Furthermore, this mutant displayed the same intracellular localization as WT SNAP25, indicating that the amino acid composition of the mini-linker is not important for SNAP25 localization. Using the results of previous peptide array experiments, we generated a SNAP25 mutant predicted to have a higher-affinity zDABM. This mutant interacted with zDHHC17 more strongly but was S-acylated with reduced efficiency in HEK293T cells, implying that a lower-affinity interaction of the SNAP25 zDABM with zDHHC17 is optimal for S-acylation efficiency. These results show that amino acids 93-111 in SNAP25 act as a flexible molecular spacer that ensures efficient coupling of the SNAP25-zDHHC17 interaction and S-acylation of SNAP25.


Subject(s)
Synaptosomal-Associated Protein 25/metabolism , Acylation , Amino Acid Motifs , Animals , HEK293 Cells , Humans , PC12 Cells , Protein Domains , Rats , Synaptosomal-Associated Protein 25/genetics
8.
Mol Cell Neurosci ; 85: 235-246, 2017 12.
Article in English | MEDLINE | ID: mdl-28768144

ABSTRACT

The S-acyltransferase zDHHC2 mediates dynamic S-acylation of PSD95 and AKAP79/150, which impacts synaptic targeting of AMPA receptors. zDHHC2 is responsive to synaptic activity and catalyses the increased S-acylation of PSD95 that occurs following action potential blockade or application of ionotropic glutamate receptor antagonists. These treatments have been proposed to increase plasma membrane delivery of zDHHC2 via an endosomal cycling pathway, enhancing substrate accessibility. To generate an improved understanding of zDHHC2 trafficking and how this might be regulated by neuronal activity, we searched for intramolecular signals that regulate enzyme localisation. Two signals were mapped to the C-terminal tail of zDHHC2: a non-canonical dileucine motif [SxxxLL] and a downstream NP motif. Mutation of these signals enhanced plasma membrane accumulation of zDHHC2 in both neuroendocrine PC12 cells and rat hippocampal neurons, consistent with reduced endocytic retrieval. Furthermore, mutation of these signals also increased accumulation of the enzyme in neurites. Interestingly, several threonine and serine residues are adjacent to these sorting motifs and analysis of phospho-mimetic mutants highlighted a potential role for phosphorylation in regulating the efficacy of these signals. This study offers new molecular insight into the signals that determine zDHHC2 localisation and highlights a potential mechanism to regulate these trafficking signals.


Subject(s)
Acyltransferases/metabolism , Neuroendocrine Cells/metabolism , Neurons/metabolism , Animals , Hippocampus/metabolism , Intracellular Space/metabolism , PC12 Cells , Protein Processing, Post-Translational/physiology , Protein Transport , Rats , Rats, Sprague-Dawley
9.
Biochem Soc Trans ; 45(3): 751-758, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28620036

ABSTRACT

S-acylation is a reversible lipid modification occurring on cysteine residues mediated by a family of membrane-bound 'zDHHC' enzymes. S-acylation predominantly results in anchoring of soluble proteins to membrane compartments or in the trafficking of membrane proteins to different compartments. Recent work has shown that although S-acylation of some proteins may involve very weak interactions with zDHHC enzymes, a pool of zDHHC enzymes exhibit strong and specific interactions with substrates, thereby recruiting them for S-acylation. For example, the ankyrin-repeat domains of zDHHC17 and zDHHC13 interact specifically with unstructured consensus sequences present in some proteins, thus contributing to substrate specificity of these enzymes. In addition to this new information on zDHHC enzyme protein substrate specificity, recent work has also identified marked differences in selectivity of zDHHC enzymes for acyl-CoA substrates and has started to unravel the underlying molecular basis for this lipid selectivity. This review will focus on the protein and acyl-CoA selectivity of zDHHC enzymes.


Subject(s)
Acyltransferases/metabolism , Acylation , Animals , Cysteine/metabolism , Humans , Membrane Proteins/metabolism , Protein Interaction Domains and Motifs , Substrate Specificity
10.
Biochem Soc Trans ; 43(2): 217-21, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25849920

ABSTRACT

The discovery of the zDHHC family of S-acyltransferase enzymes has been one of the major breakthroughs in the S-acylation field. Now, more than a decade since their discovery, major questions centre on profiling the substrates of individual zDHHC enzymes (there are 24 ZDHHC genes and several hundred S-acylated proteins), defining the mechanisms of enzyme-substrate specificity and unravelling the importance of this enzyme family for cellular physiology and pathology.


Subject(s)
Acylation/genetics , Acyltransferases/genetics , Acyltransferases/metabolism , Humans , Multigene Family/genetics , Substrate Specificity
11.
PLoS One ; 7(4): e34764, 2012.
Article in English | MEDLINE | ID: mdl-22506049

ABSTRACT

BACKGROUND: The sodium-hydrogen exchanger regulatory factor 1 (NHERF1) binds to the main renal phosphate transporter NPT2a and to the parathyroid hormone (PTH) receptor. We have recently identified mutations in NHERF1 that decrease renal phosphate reabsorption by increasing PTH-induced cAMP production in the renal proximal tubule. METHODS: We compared relevant parameters of phosphate homeostasis in a patient with a previously undescribed mutation in NHERF1 and in control subjects. We expressed the mutant NHERF1 protein in Xenopus Oocytes and in cultured cells to study its effects on phosphate transport and PTH-induced cAMP production. RESULTS: We identified in a patient with inappropriate renal phosphate reabsorption a previously unidentified mutation (E68A) located in the PDZ1 domain of NHERF1.We report the consequences of this mutation on NHERF1 function. E68A mutation did not modify cAMP production in the patient. PTH-induced cAMP synthesis and PKC activity were not altered by E68A mutation in renal cells in culture. In contrast to wild-type NHERF1, expression of the E68A mutant in Xenopus oocytes and in human cells failed to increase phosphate transport. Pull down experiments showed that E68A mutant did not interact with NPT2a, which robustly interacted with wild type NHERF1 and previously identified mutants. Biotinylation studies revealed that E68A mutant was unable to increase cell surface expression of NPT2a. CONCLUSIONS: Our results indicate that the PDZ1 domain is critical for NHERF1-NPT2a interaction in humans and for the control of NPT2a expression at the plasma membrane. Thus we have identified a new mechanism of renal phosphate loss and shown that different mutations in NHERF1 can alter renal phosphate reabsorption via distinct mechanisms.


Subject(s)
Mutation , Parathyroid Hormone/metabolism , Phosphate Transport Proteins/genetics , Phosphoproteins/genetics , Sodium-Hydrogen Exchangers/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics , Aged , Animals , Cell Line, Tumor , Cells, Cultured , Cyclic AMP/metabolism , HeLa Cells , Humans , Kidney Tubules, Proximal/metabolism , Oocytes/metabolism , Opossums , Phosphate Transport Proteins/biosynthesis , Phosphates/metabolism , Phosphoproteins/metabolism , Protein Kinase C/metabolism , Sodium-Hydrogen Exchangers/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIa/metabolism , Xenopus laevis/genetics , Xenopus laevis/metabolism
12.
J Cell Sci ; 124(Pt 19): 3344-55, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21940797

ABSTRACT

Poly(A)-binding protein 1 (PABP1) has a fundamental role in the regulation of mRNA translation and stability, both of which are crucial for a wide variety of cellular processes. Although generally a diffuse cytoplasmic protein, it can be found in discrete foci such as stress and neuronal granules. Mammals encode several additional cytoplasmic PABPs that remain poorly characterised, and with the exception of PABP4, appear to be restricted in their expression to a small number of cell types. We have found that PABP4, similarly to PABP1, is a diffusely cytoplasmic protein that can be localised to stress granules. However, UV exposure unexpectedly relocalised both proteins to the nucleus. Nuclear relocalisation of PABPs was accompanied by a reduction in protein synthesis but was not linked to apoptosis. In examining the mechanism of PABP relocalisation, we found that it was related to a change in the distribution of poly(A) RNA within cells. Further investigation revealed that this change in RNA distribution was not affected by PABP knockdown but that perturbations that block mRNA export recapitulate PABP relocalisation. Our results support a model in which nuclear export of PABPs is dependent on ongoing mRNA export, and that a block in this process following UV exposure leads to accumulation of cytoplasmic PABPs in the nucleus. These data also provide mechanistic insight into reports that transcriptional inhibitors and expression of certain viral proteins cause relocation of PABP to the nucleus.


Subject(s)
Blood Proteins/metabolism , Cell Nucleus/metabolism , Poly(A)-Binding Protein I/metabolism , Poly(A)-Binding Proteins/metabolism , Protein Transport/radiation effects , RNA, Messenger/metabolism , Active Transport, Cell Nucleus , Animals , Apoptosis/radiation effects , Cytoplasm/metabolism , Cytoplasmic Granules/metabolism , HeLa Cells , Humans , Immediate-Early Proteins/biosynthesis , Mice , Microscopy, Fluorescence , NIH 3T3 Cells , Protein Biosynthesis , RNA Transport , Recombinant Proteins/biosynthesis , Ultraviolet Rays
13.
J Cell Biol ; 191(7): 1229-38, 2010 Dec 27.
Article in English | MEDLINE | ID: mdl-21187327

ABSTRACT

S-palmitoylation describes the reversible attachment of fatty acids (predominantly palmitate) onto cysteine residues via a labile thioester bond. This posttranslational modification impacts protein functionality by regulating membrane interactions, intracellular sorting, stability, and membrane micropatterning. Several recent findings have provided a tantalizing insight into the regulation and spatiotemporal dynamics of protein palmitoylation. In mammalian cells, the Golgi has emerged as a possible super-reaction center for the palmitoylation of peripheral membrane proteins, whereas palmitoylation reactions on post-Golgi compartments contribute to the regulation of specific substrates. In addition to palmitoylating and depalmitoylating enzymes, intracellular palmitoylation dynamics may also be controlled through interplay with distinct posttranslational modifications, such as phosphorylation and nitrosylation.


Subject(s)
Lipoylation/physiology , Protein Processing, Post-Translational/physiology , Animals , Golgi Apparatus/metabolism , Humans , Protein Transport/physiology
14.
J Biol Chem ; 285(45): 34408-18, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-20817733

ABSTRACT

PiT1/SLC20A1 is a sodium-dependent P(i) transporter expressed by most mammalian cells. Interestingly, PiT1 transcription has been shown to be up-regulated by the tumor necrosis factor α (TNF), and we have now investigated the possible involvement of PiT1 in TNF-induced apoptosis. We show that PiT1-depleted cells are more sensitive to the proapoptotic activity of TNF (i.e. when the antiapoptotic NFκB pathway is inactivated). These observations were made in the human HeLa cancer cell line either transiently or stably depleted in PiT1 by RNA interference and in immortalized mouse embryonic fibroblasts isolated from PiT1 knock-out embryos. Depletion of the closely related family member PiT2 had no effect on TNF-induced apoptosis, showing that this effect was specific to PiT1. The increased sensitivity of PiT1-depleted cells was evident regardless of the presence or absence of extracellular P(i), suggesting that a defect in P(i) uptake was not involved in the observed phenotype. Importantly, we show that the re-expression of a P(i) uptake mutant of PiT1 in PiT1(-/-) mouse embryonic fibroblasts delays apoptosis as efficiently as the WT protein, showing that this function of PiT1 is unrelated to its transport activity. Caspase-8 is more activated in PiT1-depleted cells, and our data reveal that the sustained activation of the MAPK JNK is up-regulated in response to TNF. JNK activity is actually involved in PiT1-depleted cell death because specific JNK inhibitors delay apoptosis.


Subject(s)
Apoptosis/drug effects , Fibroblasts/metabolism , Sodium-Phosphate Cotransporter Proteins, Type III/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Up-Regulation/drug effects , Animals , Apoptosis/physiology , Biological Transport/drug effects , Biological Transport/physiology , Caspase 8/genetics , Caspase 8/metabolism , Cell Line, Transformed , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Enzyme Activation/drug effects , Enzyme Activation/physiology , Fibroblasts/cytology , HeLa Cells , Humans , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Mice , Mice, Knockout , Protein Kinase Inhibitors/pharmacology , RNA Interference , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Transcription, Genetic/drug effects
15.
J Biol Chem ; 285(32): 24629-38, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-20519516

ABSTRACT

SNAP25 plays an essential role in neuronal exocytosis pathways. SNAP25a and SNAP25b are alternatively spliced isoforms differing by only nine amino acids, three of which occur within the palmitoylated cysteine-rich domain. SNAP23 is 60% identical to SNAP25 and has a distinct cysteine-rich domain to both SNAP25a and SNAP25b. Despite the conspicuous differences within the palmitoylated domains of these secretory proteins, there is no information on their comparative interactions with palmitoyl transferases. We report that membrane association of all SNAP25/23 proteins is enhanced by Golgi-localized DHHC3, DHHC7, and DHHC17. In contrast, DHHC15 promoted a statistically significant increase in membrane association of only SNAP25b. To investigate the underlying cause of this differential specificity, we examined a SNAP23 point mutant (C79F) designed to mimic the cysteine-rich domain of SNAP25b. DHHC15 promoted a marked increase in membrane binding and palmitoylation of this SNAP23 mutant, demonstrating that the distinct cysteine-rich domains of SNAP25/23 contribute to differential interactions with DHHC15. The lack of activity of DHHC15 toward wild-type SNAP23 was not overcome by replacing its DHHC domain with that from DHHC3, suggesting that substrate specificity is not determined by the DHHC domain alone. Interestingly, DHHC2, which is closely related to DHHC15, associates with the plasma membrane in PC12 cells and can palmitoylate all SNAP25 isoforms. DHHC2 is, thus, a candidate enzyme to regulate SNAP25/23 palmitoylation dynamics at the plasma membrane. Finally, we demonstrate that overexpression of specific Golgi-localized DHHC proteins active against SNAP25/23 proteins perturbs the normal secretion of human growth hormone from PC12 cells.


Subject(s)
Gene Expression Regulation, Enzymologic , Palmitic Acid/chemistry , Qb-SNARE Proteins/physiology , Qc-SNARE Proteins/physiology , Synaptosomal-Associated Protein 25/physiology , Vesicular Transport Proteins/physiology , Amino Acid Sequence , Animals , Cell Membrane/metabolism , Cysteine/chemistry , Golgi Apparatus/metabolism , Humans , Molecular Sequence Data , PC12 Cells , Protein Isoforms , Rats , Sequence Homology, Amino Acid , Synaptosomal-Associated Protein 25/metabolism
16.
PLoS One ; 5(2): e9148, 2010 Feb 10.
Article in English | MEDLINE | ID: mdl-20161774

ABSTRACT

BACKGROUND: PiT1 (or SLC20a1) encodes a widely expressed plasma membrane protein functioning as a high-affinity Na(+)-phosphate (Pi) cotransporter. As such, PiT1 is often considered as a ubiquitous supplier of Pi for cellular needs regardless of the lack of experimental data. Although the importance of PiT1 in mineralizing processes have been demonstrated in vitro in osteoblasts, chondrocytes and vascular smooth muscle cells, in vivo evidence is missing. METHODOLOGY/PRINCIPAL FINDINGS: To determine the in vivo function of PiT1, we generated an allelic series of PiT1 mutations in mice by combination of wild-type, hypomorphic and null PiT1 alleles expressing from 100% to 0% of PiT1. In this report we show that complete deletion of PiT1 results in embryonic lethality at E12.5. PiT1-deficient embryos display severely hypoplastic fetal livers and subsequent reduced hematopoiesis resulting in embryonic death from anemia. We show that the anemia is not due to placental, yolk sac or vascular defects and that hematopoietic progenitors have no cell-autonomous defects in proliferation and differentiation. In contrast, mutant fetal livers display decreased proliferation and massive apoptosis. Animals carrying two copies of hypomorphic PiT1 alleles (resulting in 15% PiT1 expression comparing to wild-type animals) survive at birth but are growth-retarded and anemic. The combination of both hypomorphic and null alleles in heterozygous compounds results in late embryonic lethality (E14.5-E16.5) with phenotypic features intermediate between null and hypomorphic mice. In the three mouse lines generated we could not evidence defects in early skeleton formation. CONCLUSION/SIGNIFICANCE: This work is the first to illustrate a specific in vivo role for PiT1 by uncovering it as being a critical gene for normal developmental liver growth.


Subject(s)
Embryo, Mammalian/metabolism , Liver/metabolism , Mutation , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Animals , Apoptosis , Cell Count , Cell Proliferation , Cells, Cultured , Embryo, Mammalian/abnormalities , Erythrocytes/metabolism , Female , Gene Expression Regulation, Developmental , Genes, Essential , Genotype , Hematopoietic Stem Cells/metabolism , Liver/cytology , Liver/embryology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Knockout , Reverse Transcriptase Polymerase Chain Reaction , Sodium-Phosphate Cotransporter Proteins, Type III/deficiency , Time Factors
17.
J Biol Chem ; 284(45): 31363-74, 2009 Nov 06.
Article in English | MEDLINE | ID: mdl-19726692

ABSTRACT

PiT1 is a Na(+)-phosphate (P(i)) cotransporter located at the plasma membrane that enables P(i) entry into the cell. Its broad tissue expression pattern has led to the idea that together with the closely related family member PiT2, PiT1 is the ubiquitous supplier of P(i) to the cell. Moreover, the role of P(i) in phosphorylation reactions, ATP production, DNA structure, and synthesis has led to the view that P(i) availability could be an important determinant of cell growth. However, these issues have not been clearly addressed to date, and the role of either P(i) or PiT proteins in cell proliferation is unknown. Using RNA interference in HeLa and HepG2 cells, we show that transient or stable PiT1 depletion markedly reduces cell proliferation, delays cell cycle, and impairs mitosis and cytokinesis. In vivo, PiT1 depletion greatly reduced tumor growth when engineered HeLa cells were injected into nude mice. We provide evidence that this effect on cell proliferation is specific to PiT1 and not shared by PiT2 and is not the consequence of impaired membrane Na(+)-P(i) transport. Moreover, we show that modulation of cell proliferation by PiT1 is independent from its transport function because the proliferation of PiT1-depleted cells can be rescued by non-transporting PiT1 mutants. PiT1 depletion leads to the phosphorylation of p38 mitogen-activated protein (MAP) kinase, whereas other MAP kinases and downstream targets of mammalian target of rapamycin (mTOR) remain unaffected. This study is the first to describe the effects of a P(i) transporter in cell proliferation, tumor growth, and cell signaling.


Subject(s)
Cell Proliferation , Phosphates/metabolism , Sodium-Phosphate Cotransporter Proteins, Type III/metabolism , Biological Transport , Cell Cycle , HeLa Cells , Humans , Sodium-Phosphate Cotransporter Proteins, Type III/genetics
18.
Mol Biol Cell ; 20(6): 1845-54, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19158383

ABSTRACT

SNAP25 is synthesized as a soluble protein but must associate with the plasma membrane to function in exocytosis; however, this membrane-targeting pathway is poorly defined. SNAP25 contains a palmitoylated cysteine-rich domain with four cysteines, and we show that coexpression of specific DHHC palmitoyl transferases is sufficient to promote SNAP25 membrane association in HEK293 cells. siRNA-mediated knockdown of its SNARE partner, syntaxin 1A, does not affect membrane interaction of SNAP25 in PC12 cells, whereas specific cysteine-to-alanine mutations perturb membrane binding, which is restored by leucine substitutions. These results suggest a role for cysteine hydrophobicity in initial membrane interactions of SNAP25, and indeed other hydrophobic residues in the cysteine-rich domain are also important for membrane binding. In addition to the cysteine-rich domain, proline-117 is also essential for SNAP25 membrane binding, and experiments in HEK293 cells revealed that mutation of this residue inhibits membrane binding induced by coexpression with DHHC17, but not DHHC3 or DHHC7. These results suggest a model whereby SNAP25 interacts autonomously with membranes via its hydrophobic cysteine-rich domain, requiring only sufficient expression of partner DHHC proteins for stable membrane binding. The role of proline-117 in SNAP25 palmitoylation is one of the first descriptions of elements within substrate proteins that modulate DHHC specificity.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Synaptosomal-Associated Protein 25/metabolism , Acyltransferases/metabolism , Amino Acid Sequence , Animals , Cell Line , Cell Membrane/metabolism , Cysteine/genetics , Cysteine/metabolism , Humans , Molecular Sequence Data , Mutation/genetics , Protein Binding , Rats , Synaptosomal-Associated Protein 25/chemistry , Synaptosomal-Associated Protein 25/genetics
19.
J Biol Chem ; 283(36): 25014-26, 2008 Sep 05.
Article in English | MEDLINE | ID: mdl-18596047

ABSTRACT

Cysteine-string protein (CSP) is an extensively palmitoylated DnaJ-family chaperone, which exerts an important neuroprotective function. Palmitoylation is required for the intracellular sorting and function of CSP, and thus it is important to understand how this essential modification of CSP is regulated. Recent work identified 23 putative palmitoyl transferases containing a conserved DHHC domain in mammalian cells, and here we show that palmitoylation of CSP is enhanced specifically by co-expression of the Golgi-localized palmitoyl transferases DHHC3, DHHC7, DHHC15, or DHHC17. Indeed, these DHHC proteins promote stable membrane attachment of CSP, which is otherwise cytosolic. An inverse correlation was identified between membrane affinity of unpalmitoylated CSP mutants and subsequent palmitoylation: mutants with an increased membrane affinity localize to the endoplasmic reticulum (ER) and are physically separated from the Golgi-localized DHHC proteins. Palmitoylation of an ER-localized mutant could be rescued by brefeldin A treatment, which promotes the mixing of ER and Golgi membranes. Interestingly though, the palmitoylated mutant remained at the ER following brefeldin A washout and did not traffic to more distal membrane compartments. We propose that CSP has a weak membrane affinity that allows the protein to locate its partner Golgi-localized DHHC proteins directly by membrane "sampling." Mutations that enhance membrane association prevent sampling and lead to accumulation of CSP on cellular membranes such as the ER. The coupling of CSP palmitoylation to Golgi membranes may thus be an important requirement for subsequent sorting.


Subject(s)
Acyltransferases/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , HSP40 Heat-Shock Proteins/metabolism , Lipoylation/physiology , Membrane Proteins/metabolism , Acyltransferases/genetics , Animals , Brefeldin A/pharmacology , Cell Membrane/genetics , Endoplasmic Reticulum/genetics , Golgi Apparatus/genetics , HSP40 Heat-Shock Proteins/genetics , Humans , Membrane Proteins/genetics , Mice , Mutation , Neuroprotective Agents/metabolism , PC12 Cells , Protein Structure, Tertiary/physiology , Protein Synthesis Inhibitors/pharmacology , Protein Transport/drug effects , Protein Transport/physiology , Rats
20.
J Biol Chem ; 280(20): 19449-53, 2005 May 20.
Article in English | MEDLINE | ID: mdl-15769746

ABSTRACT

SNAP25 and SNAP23 are plasma membrane SNARE proteins essential for regulated exocytosis in diverse cell types. Several recent studies have shown that these proteins are partly localized in lipid rafts, domains of the plasma membrane enriched in sphingolipids, and cholesterol. Here, we have employed cysteine mutants of SNAP25/SNAP23, which have modified affinities for raft domains, to examine whether raft association of these proteins is important for the regulation of exocytosis. PC12 cells were engineered that express the light chain of botulinum neurotoxin; in these cells all of the SNAP25 was cleaved to a lower molecular weight form, and regulated exocytosis was essentially absent. Exocytosis was rescued by expressing toxin-resistant SNAP25 or wild-type SNAP23, which is naturally toxin-resistant. Remarkably, a mutant SNAP25 protein with an increased affinity for rafts displayed a reduced ability to support exocytosis, whereas SNAP23 mutants with a decreased affinity for rafts displayed an enhancement of exocytosis when compared with wild-type SNAP23. The effects of the mutant proteins on exocytosis were dependent upon the integrity of the plasma membrane and lipid rafts. These results provide the first direct evidence that rafts regulate SNARE function and exocytosis and identify the central cysteine-rich region of SNAP25/23 as an important regulatory domain.


Subject(s)
Exocytosis/physiology , Membrane Microdomains/metabolism , Vesicular Transport Proteins/metabolism , Amino Acid Sequence , Animals , Botulinum Toxins/genetics , Botulinum Toxins/metabolism , Botulinum Toxins/toxicity , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cysteine/chemistry , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutagenesis, Site-Directed , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , PC12 Cells , Protein Structure, Tertiary , Qb-SNARE Proteins , Qc-SNARE Proteins , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SNARE Proteins , Synaptosomal-Associated Protein 25 , Vesicular Transport Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...