Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Glia ; 72(4): 708-727, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38180226

ABSTRACT

Radial glia (RG) cells generate neurons and glial cells that make up the cerebral cortex. Both in rodents and humans, these stem cells remain for a specific time after birth, named late radial glia (lRG). The knowledge of lRG and molecules that may be involved in their differentiation is based on very limited data. We analyzed whether ascorbic acid (AA) and its transporter SVCT2, are involved in lRG cells differentiation. We demonstrated that lRG cells are highly present between the first and fourth postnatal days. Anatomical characterization of lRG cells, revealed that lRG cells maintained their bipolar morphology and stem-like character. When lRG cells were labeled with adenovirus-eGFP at 1 postnatal day, we detected that some cells display an obvious migratory neuronal phenotype, suggesting that lRG cells continue generating neurons postnatally. Moreover, we demonstrated that SVCT2 was apically polarized in lRG cells. In vitro studies using the transgenic mice SVCT2+/- and SVCT2tg (SVCT2-overexpressing mouse), showed that decreased SVCT2 levels led to accelerated differentiation into astrocytes, whereas both AA treatment and elevated SVCT2 expression maintain the lRG cells in an undifferentiated state. In vivo overexpression of SVCT2 in lRG cells generated cells with a rounded morphology that were migratory and positive for proliferation and neuronal markers. We also examined mediators that can be involved in AA/SVCT2-modulated signaling pathways, determining that GSK3-ß through AKT, mTORC2, and PDK1 is active in brains with high levels of SVCT2/AA. Our data provide new insights into the role of AA and SVCT2 in late RG cells.


Subject(s)
Ascorbic Acid , Sodium-Coupled Vitamin C Transporters , Animals , Humans , Mice , Ascorbic Acid/pharmacology , Ependymoglial Cells/metabolism , Glycogen Synthase Kinase 3/metabolism , Membrane Transport Proteins/metabolism , Mice, Transgenic , Neurons/metabolism , Sodium-Coupled Vitamin C Transporters/genetics
2.
PLoS Biol ; 21(9): e3002308, 2023 09.
Article in English | MEDLINE | ID: mdl-37733692

ABSTRACT

Hyperglycemia increases glucose concentrations in the cerebrospinal fluid (CSF), activating glucose-sensing mechanisms and feeding behavior in the hypothalamus. Here, we discuss how hyperglycemia temporarily modifies ependymal cell ciliary beating to increase hypothalamic glucose sensing. A high level of glucose in the rat CSF stimulates glucose transporter 2 (GLUT2)-positive subcommissural organ (SCO) cells to release SCO-spondin into the dorsal third ventricle. Genetic inactivation of mice GLUT2 decreases hyperglycemia-induced SCO-spondin secretion. In addition, SCO cells secrete Wnt5a-positive vesicles; thus, Wnt5a and SCO-spondin are found at the apex of dorsal ependymal cilia to regulate ciliary beating. Frizzled-2 and ROR2 receptors, as well as specific proteoglycans, such as glypican/testican (essential for the interaction of Wnt5a with its receptors) and Cx43 coupling, were also analyzed in ependymal cells. Finally, we propose that the SCO-spondin/Wnt5a/Frizzled-2/Cx43 axis in ependymal cells regulates ciliary beating, a cyclic and adaptive signaling mechanism to control glucose sensing.


Subject(s)
Connexin 43 , Hyperglycemia , Animals , Mice , Rats , Neuroglia , Glucose , Wnt-5a Protein/genetics
3.
Front Neurosci ; 17: 1155758, 2023.
Article in English | MEDLINE | ID: mdl-37424994

ABSTRACT

Different studies have established the fundamental role of vitamin C in proliferation, differentiation, and neurogenesis in embryonic and adult brains, as well as in in vitro cell models. To fulfill these functions, the cells of the nervous system regulate the expression and sorting of sodium-dependent vitamin C transporter 2 (SVCT2), as well as the recycling of vitamin C between ascorbic acid (AA) and dehydroascorbic acid (DHA) via a bystander effect. SVCT2 is a transporter preferentially expressed in neurons and in neural precursor cells. In developmental stages, it is concentrated in the apical region of the radial glia, and in adult life, it is expressed preferentially in motor neurons of the cerebral cortex, starting on postnatal day 1. In neurogenic niches, SVCT2 is preferentially expressed in precursors with intermediate proliferation, where a scorbutic condition reduces neuronal differentiation. Vitamin C is a potent epigenetic regulator in stem cells; thus, it can induce the demethylation of DNA and histone H3K27m3 in the promoter region of genes involved in neurogenesis and differentiation, an effect mediated by Tet1 and Jmjd3 demethylases, respectively. In parallel, it has been shown that vitamin C induces the expression of stem cell-specific microRNA, including the Dlk1-Dio3 imprinting region and miR-143, which promotes stem cell self-renewal and suppresses de novo expression of the methyltransferase gene Dnmt3a. The epigenetic action of vitamin C has also been evaluated during gene reprogramming of human fibroblasts to induced pluripotent cells, where it has been shown that vitamin C substantially improves the efficiency and quality of reprogrammed cells. Thus, for a proper effect of vitamin C on neurogenesis and differentiation, its function as an enzymatic cofactor, modulator of gene expression and antioxidant is essential, as is proper recycling from DHA to AA by various supporting cells in the CNS.

4.
Antioxidants (Basel) ; 11(10)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36290753

ABSTRACT

Although scurvy, the severe form of vitamin C deficiency, has been almost eradicated, the prevalence of subclinical vitamin C deficiency is much higher than previously estimated and its impact on human health might not be fully understood. Vitamin C is an essential molecule, especially in the central nervous system where it performs numerous, varied and critical functions, including modulation of neurogenesis and neuronal differentiation. Although it was originally considered to occur only in the embryonic brain, it is now widely accepted that neurogenesis also takes place in the adult brain. The subventricular zone (SVZ) is the neurogenic niche where the largest number of new neurons are born; however, the effect of vitamin C deficiency on neurogenesis in this key region of the adult brain is unknown. Therefore, through BrdU labeling, immunohistochemistry, confocal microscopy and transmission electron microscopy, we analyzed the proliferation and cellular composition of the SVZ and the lateral ventricle (LVE) of adult guinea pigs exposed to a vitamin-C-deficient diet for 14 and 21 days. We found that neuroblasts in the SVZ and LVE were progressively and significantly decreased as the days under vitamin C deficiency elapsed. The neuroblasts in the SVZ and LVE decreased by about 50% in animals with 21 days of deficiency; this was correlated with a reduction in BrdU positive cells in the SVZ and LVE. In addition, the reduction in neuroblasts was not restricted to a particular rostro-caudal area, but was observed throughout the LVE. We also found that vitamin C deficiency altered cellular morphology at the ultrastructural level, especially the cellular and nuclear morphology of ependymal cells of the LVE. Therefore, vitamin C is essential for the maintenance of the SVZ cell populations required for normal activity of the SVZ neurogenic niche in the adult guinea pig brain. Based on our results from the guinea pig brain, we postulate that vitamin C deficiency could also affect neurogenesis in the human brain.

5.
Cells ; 11(20)2022 10 21.
Article in English | MEDLINE | ID: mdl-36291193

ABSTRACT

The identification of new proteins that regulate the function of one of the main cellular phosphatases, protein phosphatase 1 (PP1), is essential to find possible pharmacological targets to alter phosphatase function in various cellular processes, including the initiation and development of multiple diseases. IIIG9 is a regulatory subunit of PP1 initially identified in highly polarized ciliated cells. In addition to its ciliary location in ependymal cells, we recently showed that IIIG9 has extraciliary functions that regulate the integrity of adherens junctions. In this review, we perform a detailed analysis of the expression, localization, and function of IIIG9 in adult and developing normal brains. In addition, we provide a 3D model of IIIG9 protein structure for the first time, verifying that the classic structural and conformational characteristics of the PP1 regulatory subunits are maintained. Our review is especially focused on finding evidence linking IIIG9 dysfunction with the course of some pathologies, such as ciliopathies, drug dependence, diseases based on neurological development, and the development of specific high-malignancy and -frequency brain tumors in the pediatric population. Finally, we propose that IIIG9 is a relevant regulator of PP1 function in physiological and pathological processes in the CNS.


Subject(s)
Neoplasms , Protein Phosphatase 1 , Child , Humans , Brain/metabolism , Protein Phosphatase 1/metabolism , Proteins/metabolism
6.
Front Vet Sci ; 9: 969455, 2022.
Article in English | MEDLINE | ID: mdl-36090175

ABSTRACT

Biofilms in milking equipment on dairy farms have been associated with failures in cleaning and sanitizing protocols. These biofilms on milking equipment can be a source of contamination for bulk tank milk and a concern for animal and public health, as biofilms can become on-farm reservoirs for pathogenic bacteria that cause disease in cows and humans. This report describes a cross-sectional study on 3 dairy farms, where hoses used to divert waste milk, transition milk, and colostrum were analyzed by culture methods and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to assess the presence of pathogenic bacteria such as Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella spp. In addition, the presence of biofilms was analyzed using scanning electron microscopy and confocal spectral microscopy. Biofilms composed of multispecies microbial communities were observed on the surfaces of all milk hoses. In two dairy farms, S. aureus, P. aeruginosa, Klebsiella pneumoniae, and Klebsiella oxytoca were isolated from the milk hose samples collected. Cleaning and sanitation protocols of all surfaces in contact with milk or colostrum are crucial. Hoses used to collect waste milk, colostrum, and transition milk can be a source of biofilms and hence pathogenic bacteria. Waste milk used to feed calves can constitute a biosecurity issue and a source of pathogens, therefore an increased exposure and threat for the whole herd health and, potentially, for human health.

7.
Front Oncol ; 12: 858480, 2022.
Article in English | MEDLINE | ID: mdl-35898880

ABSTRACT

Neuroblastomas are the main extracranial tumors that affect children, while glioblastomas are the most lethal brain tumors, with a median survival time of less than 12 months, and the prognosis of these tumors is poor due to multidrug resistance. Thus, the development of new therapies for the treatment of these types of tumors is urgently needed. In this context, a new type of cell death with strong antitumor potential, called ferroptosis, has recently been described. Ferroptosis is molecularly, morphologically and biochemically different from the other types of cell death described to date because it continues in the absence of classical effectors of apoptosis and does not require the necroptotic machinery. In contrast, ferroptosis has been defined as an iron-dependent form of cell death that is inhibited by glutathione peroxidase 4 (GPX4) activity. Interestingly, ferroptosis can be induced pharmacologically, with potential antitumor activity in vivo and eventual application prospects in translational medicine. Here, we summarize the main pathways of pharmacological ferroptosis induction in tumor cells known to date, along with the limitations of, perspectives on and possible applications of this in the treatment of these tumors.

8.
Antioxid Redox Signal ; 37(7-9): 538-559, 2022 09.
Article in English | MEDLINE | ID: mdl-35166128

ABSTRACT

Aims: Glioblastoma (GB) is one of the most aggressive brain tumors. These tumors modify their metabolism, increasing the expression of glucose transporters, GLUTs, which incorporate glucose and the oxidized form of vitamin C, dehydroascorbic acid (DHA). We hypothesized that GB cells preferentially take up DHA, which is intracellularly reduced and compartmentalized into the endoplasmic reticulum (ER), promoting collagen biosynthesis and an aggressive phenotype. Results: Our results showed that GB cells take up DHA using GLUT1, while GLUT3 and sodium-dependent vitamin C transporter 2 (SVCT2) are preferably intracellular. Using a baculoviral system and reticulum-enriched extracts, we determined that SVCT2 is mainly located in the ER and corresponds to a short isoform. Ascorbic acid (AA) was compartmentalized, stimulating collagen IV secretion and increasing in vitro and in situ cell migration. Finally, orthotopic xenografts induced in immunocompetent guinea pigs showed that vitamin C deficiency retained collagen, reduced blood vessel invasion, and affected glomeruloid vasculature formation, all pathological conditions associated with malignancy. Innovation and Conclusion: We propose a functional role for vitamin C in GB development and progression. Vitamin C is incorporated into the ER of GB cells, where it favors the synthesis of collagen, thus impacting tumor development. Collagen secreted by tumor cells favors the formation of the glomeruloid vasculature and enhances perivascular invasion. Antioxid. Redox Signal. 37, 538-559.


Subject(s)
Ascorbic Acid , Glioblastoma , Animals , Ascorbic Acid/metabolism , Ascorbic Acid/pharmacology , Collagen/metabolism , Dehydroascorbic Acid/metabolism , Dehydroascorbic Acid/pharmacology , Glucose/metabolism , Guinea Pigs , Humans , Sodium-Coupled Vitamin C Transporters/metabolism , Vitamins
9.
Antioxidants (Basel) ; 10(9)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34573045

ABSTRACT

During brain development, sodium-vitamin C transporter (SVCT2) has been detected primarily in radial glial cells in situ, with low-to-absent expression in cerebral cortex neuroblasts. However, strong SVCT2 expression is observed during the first postnatal days, resulting in increased intracellular concentration of vitamin C. Hippocampal neurons isolated from SVCT2 knockout mice showed shorter neurites and low clustering of glutamate receptors. Other studies have shown that vitamin C-deprived guinea pigs have reduced spatial memory, suggesting that ascorbic acid (AA) and SVCT2 have important roles in postnatal neuronal differentiation and neurite formation. In this study, SVCT2 lentiviral overexpression induced branching and increased synaptic proteins expression in primary cultures of cortical neurons. Analysis in neuroblastoma 2a (Neuro2a) and human subventricular tumor C3 (HSVT-C3) cells showed similar branching results. SVCT2 was mainly observed in the cell membrane and endoplasmic reticulum; however, it was not detected in the mitochondria. Cellular branching in neuronal cells and in a previously standardized neurosphere assay is dependent on the recycling of vitamin C or reduction in dehydroascorbic acid (DHA, produced by neurons) by glial cells. The effect of WZB117, a selective glucose/DHA transporter 1 (GLUT1) inhibitor expressed in glial cells, was also studied. By inhibiting GLUT1 glial cells, a loss of branching is observed in vitro, which is reproduced in the cerebral cortex in situ. We concluded that vitamin C recycling between neurons and astrocyte-like cells is fundamental to maintain neuronal differentiation in vitro and in vivo. The recycling activity begins at the cerebral postnatal cortex when neurons increase SVCT2 expression and concomitantly, GLUT1 is expressed in glial cells.

10.
Sci Rep ; 11(1): 18537, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535732

ABSTRACT

Ependymal cells have multiple apical cilia that line the ventricular surfaces and the central canal of spinal cord. In cancer, the loss of ependymal cell polarity promotes the formation of different types of tumors, such as supratentorial anaplastic ependymomas, which are highly aggressive in children. IIIG9 (PPP1R32) is a protein restricted to adult ependymal cells located in cilia and in the apical cytoplasm and has unknown function. In this work, we studied the expression and localization of IIIG9 in the adherens junctions (cadherin/ß-catenin-positive junctions) of adult brain ependymal cells using confocal and transmission electron microscopy. Through in vivo loss-of-function studies, ependymal denudation (single-dose injection experiments of inhibitory adenovirus) was observed, inducing the formation of ependymal cells with a "balloon-like" morphology. These cells had reduced cadherin expression (and/or delocalization) and cleavage of the cell death marker caspase-3, with "cilia rigidity" morphology (probably vibrational beating activity) and ventriculomegaly occurring prior to these events. Finally, after performing continuous infusions of adenovirus for 14 days, we observed total cell denudation and reactive parenchymal astrogliosis. Our data confirmed that IIIG9 is essential for the maintenance of adherens junctions of polarized ependymal cells. Eventually, altered levels of this protein in ependymal cell differentiation may increase ventricular pathologies, such as hydrocephalus or neoplastic transformation.


Subject(s)
Adherens Junctions/metabolism , Ependyma/cytology , Nerve Tissue Proteins/metabolism , Adherens Junctions/ultrastructure , Animals , Cell Adhesion , Cells, Cultured , Ependyma/metabolism , Ependyma/ultrastructure , Loss of Function Mutation , Nerve Tissue Proteins/genetics , Rats, Sprague-Dawley
11.
J Cell Physiol ; 236(8): 5801-5817, 2021 08.
Article in English | MEDLINE | ID: mdl-33432597

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor with a median survival of 14.6 months. GBM is highly resistant to radio- and chemotherapy, and remains without a cure; hence, new treatment strategies are constantly sought. Vitamin C, an essential micronutrient and antioxidant, was initially described as an antitumor molecule; however, several studies have shown that it can promote tumor progression and angiogenesis. Thus, considering the high concentrations of vitamin C present in the brain, our aim was to study the effect of vitamin C deficiency on the progression of GBM using a GBM model generated by the stereotactic injection of human GBM cells (U87-MG or HSVT-C3 cells) in the subventricular zone of guinea pig brain. Initial characterization of U87-MG and HSVT-C3 cells showed that HSVT-C3 are highly proliferative, overexpress p53, and are resistant to ferroptosis. To induce intraperiventricular tumors, animals received control or a vitamin C-deficient diet for 3 weeks, after which histopathological and confocal microscopy analyses were performed. We demonstrated that the vitamin C-deficient condition reduced the glomeruloid vasculature and microglia/macrophage infiltration in U87-MG tumors. Furthermore, tumor size, proliferation, glomeruloid vasculature, microglia/macrophage infiltration, and invasion were reduced in C3 tumors carried by vitamin C-deficient guinea pigs. In conclusion, the effect of the vitamin C deficiency was dependent on the tumor cell used for GBM induction. HSVT-C3 cells, a cell line with stem cell features isolated from a human subventricular GBM, showed higher sensitivity to the deficient condition; however, vitamin C deficiency displayed an antitumor effect in both GBM models analyzed.


Subject(s)
Ascorbic Acid Deficiency/genetics , Cell Proliferation/genetics , Glioblastoma/genetics , Neoplastic Stem Cells/metabolism , Animals , Ascorbic Acid/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/genetics , Glioblastoma/pathology , Guinea Pigs , Humans , Neoplastic Stem Cells/pathology , Xenograft Model Antitumor Assays/methods
12.
Antioxidants (Basel) ; 9(12)2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33327638

ABSTRACT

The reduced form of vitamin C, ascorbic acid (AA), has been related with gene expression and cell differentiation in the cerebral cortex. In neurons, AA is mainly oxidized to dehydroascorbic acid (DHA); however, DHA cannot accumulate intracellularly because it induces metabolic changes and cell death. In this context, it has been proposed that vitamin C recycling via neuron-astrocyte coupling maintains AA levels and prevents DHA parenchymal accumulation. To date, the role of this mechanism during the outgrowth of neurites is unknown. To stimulate neuronal differentiation, adhered neurospheres treated with AA and retinoic acid (RA) were used. Neuritic growth was analyzed by confocal microscopy, and the effect of vitamin C recycling (bystander effect) in vitro was studied using different cells. AA stimulates neuritic growth more efficiently than RA. However, AA is oxidized to DHA in long incubation periods, generating a loss in the formation of neurites. Surprisingly, neurite growth is maintained over time following co-incubation of neurospheres with cells that efficiently capture DHA. In this sense, astrocytes have high capacity to recycle DHA and stimulate the maintenance of neurites. We demonstrated that vitamin C recycling in vitro regulates the morphology of immature neurons during the differentiation and maturation processes.

13.
J Cell Physiol ; 235(12): 9773-9784, 2020 12.
Article in English | MEDLINE | ID: mdl-32437012

ABSTRACT

Oxidative stress and inflammation are crucial factors that increase with age. In the progression of multiple age-related diseases, antioxidants and bioactive compounds have been recognized as useful antiaging agents. Oxidized or reduced vitamin C exerts different actions on tissues and has different metabolism and uptake. In this study, we analyzed the antiaging effect of vitamin C, both oxidized and reduced forms, in renal aging using laser microdissection, quantitative reverse-transcription polymerase chain reaction, and immunohistochemical analyses. In the kidneys of old SAM mice (10 months of age), a model of accelerated senescence, vitamin C, especially in the oxidized form (dehydroascorbic acid [DHA]) improves renal histology and function. Serum creatinine levels and microalbuminuria also decrease after treatment with a decline in azotemia. In addition, sodium-vitamin C cotransporter isoform 1 levels, which were increased during aging, are normalized. In contrast, the pattern of glucose transporter 1 expression is not affected by aging or vitamin C treatment. We conclude that oxidized and reduced vitamin C are potent antiaging therapies and that DHA reverses the kidney damage observed in senescence-accelerated prone mouse 8 to a greater degree.


Subject(s)
Ascorbic Acid/pharmacology , Dehydroascorbic Acid/pharmacology , Inflammation/genetics , Kidney/drug effects , Sodium-Coupled Vitamin C Transporters/genetics , Aging/genetics , Aging/pathology , Animals , Ascorbic Acid/genetics , Gene Expression Regulation/drug effects , Glucose Transporter Type 1/genetics , Humans , Inflammation/pathology , Kidney/ultrastructure , Mice , Oxidative Stress/drug effects
14.
Redox Biol ; 29: 101408, 2020 01.
Article in English | MEDLINE | ID: mdl-31926631

ABSTRACT

Under physiological conditions, vitamin C is the main antioxidant found in the central nervous system and is found in two states: reduced as ascorbic acid (AA) and oxidized as dehydroascorbic acid (DHA). However, under pathophysiological conditions, AA is oxidized to DHA. The oxidation of AA and subsequent production of DHA in neurons are associated with a decrease in GSH concentrations, alterations in glucose metabolism and neuronal death. To date, the endogenous molecules that act as intrinsic regulators of neuronal necroptosis under conditions of oxidative stress are unknown. Here, we show that treatment with AA regulates the expression of pro- and antiapoptotic genes. Vitamin C also regulates the expression of RIPK1/MLKL, whereas the oxidation of AA in neurons induces morphological alterations consistent with necroptosis and MLKL activation. The activation of necroptosis by AA oxidation in neurons results in bubble formation, loss of membrane integrity, and ultimately, cellular explosion. These data suggest that necroptosis is a target for cell death induced by vitamin C.


Subject(s)
Ascorbic Acid , Necroptosis , Ascorbic Acid/pharmacology , Dehydroascorbic Acid , Neurons , Oxidation-Reduction , Oxidative Stress
15.
Sci Rep ; 9(1): 14422, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31594969

ABSTRACT

Vitamin C is incorporated into the cerebrospinal fluid (CSF) through choroid plexus cells. While the transfer of vitamin C from the blood to the brain has been studied functionally, the vitamin C transporter, SVCT2, has not been detected in the basolateral membrane of choroid plexus cells. Furthermore, it is unknown how its expression is induced in the developing brain and modulated in scurvy conditions. We concluded that SVCT2 is intensely expressed in the second half of embryonic brain development and postnatal stages. In postnatal and adult brain, SVCT2 is highly expressed in all choroidal plexus epithelial cells, shown by colocalization with GLUT1 in the basolateral membranes and without MCT1 colocalization, which is expressed in the apical membrane. We confirmed that choroid plexus explant cells (in vitro) form a sealed epithelial structure, which polarized basolaterally, endogenous or overexpressed SVCT2. These results are reproduced in vivo by injecting hSVCT2wt-EYFP lentivirus into the CSF. Overexpressed SVCT2 incorporates AA (intraperitoneally injected) from the blood to the CSF. Finally, we observed in Guinea pig brain under scorbutic condition, that normal distribution of SVCT2 in choroid plexus may be regulated by peripheral concentrations of vitamin C. Additionally, we observed that SVCT2 polarization also depends on the metabolic stage of the choroid plexus cells.


Subject(s)
Ascorbic Acid/metabolism , Brain/metabolism , Glucose Transporter Type 1/blood , Sodium-Coupled Vitamin C Transporters/blood , Animals , Blood-Brain Barrier/growth & development , Blood-Brain Barrier/metabolism , Brain/growth & development , Cell Membrane/metabolism , Cells, Cultured , Choroid Plexus/metabolism , Embryonic Development/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Gene Expression Regulation, Developmental/genetics , Guinea Pigs , Mice , Monocarboxylic Acid Transporters/genetics , Neurons/metabolism , Sodium-Coupled Vitamin C Transporters/cerebrospinal fluid , Swine , Symporters/genetics
16.
J Cell Physiol ; 234(11): 19331-19338, 2019 11.
Article in English | MEDLINE | ID: mdl-30963581

ABSTRACT

For a long time, the effect of vitamin C on cancer cells has been a controversial concept. From Linus Pauling's studies in 1976, it was proposed that ascorbic acid (AA) could selectively kill tumor cells. However, further research suggested that vitamin C has no effect on tumor survival. In the last decade, new and emerging functions for vitamin C have been discovered using the reduced form, AA, and the oxidized form, dehydroascorbic acid (DHA), independently. In this review, we summarized the latest findings related to the effects of DHA on the survival and metabolism of tumor cells. At the same time, we put special emphasis on the bystander effect and the recycling capacity of vitamin C in various cellular models, and how these concepts can affect the experimentation with vitamin C and its therapeutic application in the treatment against cancer.


Subject(s)
Ascorbic Acid/therapeutic use , Biological Transport/drug effects , Dehydroascorbic Acid/therapeutic use , Neoplasms/drug therapy , Ascorbic Acid/metabolism , Dehydroascorbic Acid/metabolism , Humans , Neoplasms/metabolism , Neoplasms/pathology , Oxidation-Reduction/drug effects
17.
Mol Neurobiol ; 55(2): 1136-1149, 2018 02.
Article in English | MEDLINE | ID: mdl-28097475

ABSTRACT

Ascorbic acid (AA) is a known antioxidant that participates in a wide range of processes, including stem cell differentiation. It enters the cell through the sodium-ascorbate co-transporter SVCT2, which is mainly expressed by neurons in the adult brain. Here, we have characterized SVCT2 expression in the postnatal cerebellum in situ, a model used for studying neurogenesis, and have identified its expression in granular precursor cells and mature neurons. We have also detected SVCT2 expression in the cerebellar cell line C17.2 and in postnatal cerebellum-derived neurospheres in vitro and have identified a tight relationship between SVCT2 expression and that of the stem cell-like marker nestin. AA supplementation potentiates the neuronal phenotype in cerebellar neural stem cells by increasing the expression of the neuronal marker ß III tubulin. Stable over-expression of SVCT2 in C17.2 cells enhances ß III tubulin expression, but it also increases cell death, suggesting that AA transporter levels must be finely tuned during neural stem cell differentiation.


Subject(s)
Ascorbic Acid/pharmacology , Cerebellum/metabolism , Neural Stem Cells/metabolism , Neurogenesis/drug effects , Neurons/metabolism , Sodium-Coupled Vitamin C Transporters/metabolism , Animals , Cell Line , Cerebellum/cytology , Cerebellum/drug effects , Mice , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neurons/cytology , Neurons/drug effects
18.
Mol Neurobiol ; 55(7): 5439-5452, 2018 Jul.
Article in English | MEDLINE | ID: mdl-28942474

ABSTRACT

Ascorbic acid (AA), the reduced form of vitamin C, acts as a neuroprotector by eliminating free radicals in the brain. Sodium/vitamin C co-transporter isoform 2 (SVCT2) mediates uptake of AA by neurons. It has been reported that SVCT2 mRNA is induced in astrocytes under ischemic damage, suggesting that its expression is enhanced in pathological conditions. However, it remains to be established if SVCT expression is altered in the presence of reactive astrogliosis generated by different brain pathologies. In the present work, we demonstrate that SVCT2 expression is increased in astrocytes present at sites of neuroinflammation induced by intracerebroventricular injection of a GFP-adenovirus or the microbial enzyme, neuraminidase. A similar result was observed at 5 and 10 days after damage in a model of traumatic injury and in the hippocampus and cerebral cortex in the in vivo kindling model of epilepsy. Furthermore, we defined that cortical astrocytes maintained in culture for long periods acquire markers of reactive gliosis and express SVCT2, in a similar way as previously observed in situ. Finally, by means of second harmonic generation and 2-photon fluorescence imaging, we analyzed brain necropsied material from patients with Alzheimer's disease (AD), which presented with an accumulation of amyloid plaques. Strikingly, although AD is characterized by focalized astrogliosis surrounding amyloid plaques, SVCT2 expression at the astroglial level was not detected. We conclude that SVCT2 is heterogeneously induced in reactive astrogliosis generated in different pathologies affecting the central nervous system (CNS).


Subject(s)
Astrocytes/metabolism , Astrocytes/pathology , Brain/metabolism , Brain/pathology , Sodium-Coupled Vitamin C Transporters/metabolism , Adenoviridae/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Gliosis/metabolism , Gliosis/pathology , Green Fluorescent Proteins/metabolism , Neuraminidase/metabolism , Rats, Sprague-Dawley
19.
J Cell Physiol ; 232(9): 2418-2426, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27463513

ABSTRACT

In the kidney, vitamin C is reabsorbed from the glomerular ultrafiltrate by sodium-vitamin C cotransporter isoform 1 (SVCT1) located in the brush border membrane of the proximal tubules. Although we know that vitamin C levels decrease with age, the adaptive physiological mechanisms used by the kidney for vitamin C reabsorption during aging remain unknown. In this study, we used an animal model of accelerated senescence (SAMP8 mice) to define the morphological alterations and aging-induced changes in the expression of vitamin C transporters in renal tissue. Aging induced significant morphological changes, such as periglomerular lymphocytic infiltrate and glomerular congestion, in the kidneys of SAMP8 mice, although no increase in collagen deposits was observed using 2-photon microscopy analysis and second harmonic generation. The most characteristic histological alteration was the dilation of intracellular spaces in the basolateral region of proximal tubule epithelial cells. Furthermore, a combination of laser microdissection, qRT-PCR, and immunohistochemical analyses allowed us to determine that SVCT1 expression specifically increased in the proximal tubules from the outer strip of the outer medulla (segment S3) and cortex (segment S2) during aging and that these tubules also express GLUT1. We conclude that aging modulates vitamin C transporter expression and that renal over-expression of SVCT1 enhances vitamin C reabsorption in aged animals that may synthesize less vitamin C. J. Cell. Physiol. 232: 2418-2426, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Aging/metabolism , Ascorbic Acid/metabolism , Kidney/metabolism , Renal Reabsorption , Sodium-Coupled Vitamin C Transporters/metabolism , Adaptation, Physiological , Age Factors , Aging/genetics , Aging/pathology , Animals , Cellular Senescence , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Kidney/ultrastructure , Male , Mice, Inbred BALB C , Models, Animal , Sodium-Coupled Vitamin C Transporters/genetics , Up-Regulation
20.
Stem Cells ; 34(10): 2574-2586, 2016 10.
Article in English | MEDLINE | ID: mdl-27299504

ABSTRACT

In the mouse brain, neuroblasts generated in the subventricular zone (SVZ) migrate to the olfactory bulb (OB) through the rostral migratory stream (RMS). Although the RMS is not present in the human brain, a migratory pathway that is organized around a ventricular cavity that reaches the OB has been reported. A similar cavity, the lateral ventricle extension (LVE), is found in the adult guinea pig brain. Therefore, we analyzed cytoarchitecture, proliferative activity and precursor cell migration in the SVZ and LVE of 1-, 6- and 12-month-old guinea pigs. In young animals, we used confocal spectral and transmission electron microscopy to identify neuroblasts, astrocytes, and progenitor cells in the SVZ and LVE. Analysis of peroxidase diffusion demonstrated that the LVE was a continuous cavity lined by ependymal cells and surrounded by neuroblasts. Precursor cells were mostly located in the SVZ and migrated from the SVZ to the OB through the LVE. Finally, analysis of 6- and 12-month-old guinea pigs revealed that the LVE was preserved in older animals; however, the number of neurogenic cells was significantly reduced. Consequently, we propose that the guinea pig brain may be used as a new neurogenic model with increased similarity to humans, given that the LVE connects the LV with the OB, as has been described in humans, and that the LVE works a migratory pathway. Stem Cells 2016;34:2574-2586.


Subject(s)
Aging/physiology , Cell Movement , Lateral Ventricles/cytology , Neurons/cytology , Animals , Cell Proliferation , Cell Shape , Guinea Pigs , Lateral Ventricles/ultrastructure , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...