Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32366712

ABSTRACT

Cytochrome P450 (CYP) enzymes are involved in the biotransformation of chloroquine (CQ), but the role of the different profiles of metabolism of this drug in relation to Plasmodium vivax recurrences has not been properly investigated. To investigate the influence of the CYP genotypes associated with CQ metabolism on the rates of P. vivax early recurrences, a case-control study was carried out. The cases included patients presenting with an early recurrence (CQ-recurrent individuals), defined as a recurrence during the first 28 days after initial infection and plasma concentrations of CQ plus desethylchloroquine (DCQ; the major CQ metabolite) higher than 100 ng/ml. A control group with no parasite recurrence over the follow-up (the CQ-responsive group) was also included. CQ and DCQ plasma levels were measured on day 28. CQ-metabolizing CYP (CYP2C8, CYP3A4, and CYP3A5) genotypes were determined by real-time PCR. An ex vivo study was conducted to verify the efficacy of CQ and DCQ against P. vivax isolates. The frequency of alleles associated with normal and slow metabolism was similar between the cases and the controls for the CYP2C8 (odds ratio [OR] = 1.45, 95% confidence interval [CI] = 0.51 to 4.14, P = 0.570), CYP3A4 (OR = 2.38, 95% CI = 0.92 to 6.19, P = 0.105), and CYP3A5 (OR = 4.17, 95% CI = 0.79 to 22.04, P = 1.038) genes. DCQ levels were higher than CQ levels, regardless of the genotype. Regarding the DCQ/CQ ratio, there was no difference between groups or between those patients who had a normal genotype and those patients who had a mutant genotype. DCQ and CQ showed similar efficacy ex vivo CYP genotypes had no influence on early recurrence rates. The similar efficacy of CQ and DCQ ex vivo could explain the absence of therapeutic failure, despite the presence of alleles associated with slow metabolism.


Subject(s)
Cytochrome P-450 CYP2C8 , Cytochrome P-450 CYP3A , Malaria, Vivax , Case-Control Studies , Cytochrome P-450 CYP2C8/genetics , Cytochrome P-450 CYP3A/genetics , Genotype , Humans , Malaria, Vivax/genetics , Plasmodium vivax , Recurrence
2.
Pathogens ; 10(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396824

ABSTRACT

BACKGROUND: Early recurrence of Plasmodium vivax is a challenge for malaria control in the field, particularly because this species is associated with lower parasitemia, which hinders diagnosis and monitoring through blood smear testing. Early recurrences, defined as the persistence of parasites in the peripheral blood despite adequate drug dosages, may arise from resistance to chloroquine. The objective of the study was to estimate early recurrence of P. vivax in the Brazilian Amazon by using a highly-sensitive detection method, in this case, PCR. METHODS: An ultra-sensitive qPCR that targeted mitochondrial DNA was used to compare a standard qPCR that targeted 18S rDNA to detect early recurrence of P. vivax in very low densities in samples from patients treated with chloroquine. RESULTS: Out of a total of 312 cases, 29 samples (9.3%) were characterized as recurrences, from which 3.2% (10/312) were only detected through ultra-sensitive qPCR testing. CONCLUSIONS: Studies that report the detection of P. vivax early recurrences using light microscopy may severely underestimate their true incidence.

SELECTION OF CITATIONS
SEARCH DETAIL
...