Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732105

ABSTRACT

Multiple myeloma is an incurable plasma cell malignancy. Most patients end up relapsing and developing resistance to antineoplastic drugs, like bortezomib. Antibiotic tigecycline has activity against myeloma. This study analyzed tigecycline and bortezomib combination on cell lines and plasma cells from myeloma patients. Apoptosis, autophagic vesicles, mitochondrial mass, mitochondrial superoxide, cell cycle, and hydrogen peroxide were studied by flow cytometry. In addition, mitochondrial antioxidants and electron transport chain complexes were quantified by reverse transcription real-time PCR (RT-qPCR) or western blot. Cell metabolism and mitochondrial activity were characterized by Seahorse and RT-qPCR. We found that the addition of tigecycline to bortezomib reduces apoptosis in proportion to tigecycline concentration. Supporting this, the combination of both drugs counteracts bortezomib in vitro individual effects on the cell cycle, reduces autophagy and mitophagy markers, and reverts bortezomib-induced increase in mitochondrial superoxide. Changes in mitochondrial homeostasis and MYC upregulation may account for some of these findings. These data not only advise to avoid considering tigecycline and bortezomib combination for treating myeloma, but caution on the potential adverse impact of treating infections with this antibiotic in myeloma patients under bortezomib treatment.


Subject(s)
Apoptosis , Bortezomib , Mitochondria , Multiple Myeloma , Reactive Oxygen Species , Tigecycline , Bortezomib/pharmacology , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Tigecycline/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Autophagy/drug effects , Mitophagy/drug effects , Cell Cycle/drug effects
2.
Cancers (Basel) ; 14(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36230663

ABSTRACT

Around 50% of the familial breast cancer (BC) cases are estimated to be caused by germline variants in known low-, moderate-, and high-risk susceptibility genes, while the other half is of unknown genetic origin. In the present study, we wanted to evaluate the role of the RECQ helicases, some of which have been studied in the past as candidates, with unclear results about their role in the disease. Using next-generation sequencing (NGS) technology, we analyzed the whole coding sequence of BLM, RECQL1, RECQL4, RECQL5, and WRN in almost 2000 index cases from BC Spanish families that had previously tested negative for the known BC susceptibility genes (BRCAX) and compared the results with the controls extracted from gnomAD. Our results suggest that BLM, RECQL1, RECQL4, and WRN do not play a major role in BC susceptibility. However, in the combined analysis, joining the present results with those previously reported in a series of 1334 BC Spanish patients and controls, we found a statistically significant association between Loss of Function (LoF) variants in RECQL5 and BC risk, with an OR of 2.56 (p = 0.009; 95% CI, 1.18-4.98). Our findings support our previous work and places the RECQL5 gene as a new moderate-risk BC gene.

SELECTION OF CITATIONS
SEARCH DETAIL
...