Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 5(7): eaav1235, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31281880

ABSTRACT

A semiconductor nanowire with strong spin-orbit coupling in proximity to a superconductor is predicted to display Majorana edge states emerging under a properly oriented magnetic field. The experimental investigation of these exotic states requires assessing the one-dimensional (1D) character of the nanowire and understanding the superconducting proximity effect in the presence of a magnetic field. Here, we explore the quasi-ballistic 1D transport regime of an InAs nanowire with Ta contacts. Fine-tuned by means of local gates, the observed plateaus of approximately quantized conductance hide the presence of a localized electron, giving rise to a lurking Coulomb blockade effect and Kondo physics. When Ta becomes superconducting, this local charge causes an unusual, reentrant magnetic field dependence of the supercurrent, which we ascribe to a 0 - π transition. Our results underline the relevant role of unintentional charge localization in the few-channel regime where helical subbands and Majorana quasi-particles are expected to arise.

2.
Phys Rev Lett ; 121(25): 257701, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30608792

ABSTRACT

We demonstrate the Josephson effect in a serial double quantum dot defined in a nanowire with epitaxial superconducting leads. The supercurrent stability diagram adopts a honeycomb pattern. We observe sharp discontinuities in the magnitude of the critical current, I_{c}, as a function of dot occupation, related to doublet to singlet ground state transitions. Detuning of the energy levels offers a tuning knob for I_{c}, which attains a maximum at zero detuning. The consistency between experiment and theory indicates that our device is a faithful realization of the two-impurity Anderson model.

3.
Curr Med Chem ; 18(22): 3423-30, 2011.
Article in English | MEDLINE | ID: mdl-21728957

ABSTRACT

In the search for acetylcholinesterase inhibitors as a potential target for the discovery of anthelmintic drugs, a series of 27 pyridinic and pyrazinic compounds have been designed on the basis of molecular hybridization of two known AChE inhibitors, namely, tacrine and (-)-3-O-acetylspectaline, and on the concept of isosterism. The synthesized compounds generally presented moderate anticholinesterasic activities when compared with the positive control physostigmine, but one compound (ethyl 2-[(6-chloropyrazin-2-yl)sulfanyl] acetate) exhibited an in vitro ability to immobilize the root-knot nematode Meloidogyne incognita that was highly comparable to that of the positive control Temik. Moreover, in anthelmintic assays against the gastrointestinal parasitic nematode Nippostrongylus brasiliensis (L4), some of the compounds, such as (6-chloropyrazin-2-yl)sulfanyl ethanol (32, EC50 = 33 nM), presented activities that were considerably stronger than that of the positive control albendazole (EC50 = 340 nM). In the light of the positive results obtained in the anthelmintic evaluations, the acute oral toxicity of the representative compound diethyl 2,2'-[(3-nitropyridine-2,6-diyl) bissulfanediyl] diacetate was determined in rats, and the drug was shown to be non-toxic at a dose of 2000 mg/kg. These results, allied with the relatively simple structures of the active compounds and their facile synthesis, highlight their potential use as anthelmintic or nematicidic agents.


Subject(s)
Anthelmintics/chemistry , Antinematodal Agents/chemistry , Cholinesterase Inhibitors/chemistry , Pyrazines/pharmacology , Pyridines/pharmacology , Animals , Anthelmintics/pharmacology , Antinematodal Agents/pharmacology , Cholinesterase Inhibitors/pharmacology , Inhibitory Concentration 50 , Parasitic Sensitivity Tests , Pyrazines/chemistry , Pyridines/chemistry , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL