Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Mar Genomics ; 75: 101109, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38603950

ABSTRACT

In an era of unprecedented industrial and agricultural growth, metal contamination in marine environments is a pressing concern. Sentinel organisms such as the mangrove oyster Crassostrea gasar provide valuable insights into these environments' health. However, a comprehensive understanding of the molecular mechanisms underlying their response to metal exposure remains elusive. To address this gap, we reanalyzed the 454-sequencing data of C. gasar, utilizing an array of bioinformatics workflow of CDTA (Combined De Novo Transcriptome Assembly) to generate a more representative assembly. In parallel, C. gasar individuals were exposed to two concentrations of zinc (850 and 4500 µg L-1 Zn) for 48 h to understand their molecular responses. We utilized Trinotate workflow for the 11,684-CDTA unigenes annotation, with most transcripts aligning with the genus Crassostrea. Our analysis indicated that 67.3% of transcript sequences showed homology with Pfam, while 51.4% and 54.5%, respectively had GO and KO terms annotated. We identified potential metal pollution biomarkers, focusing on metal-related genes, such as those related to the GSH biosynthesis (CHAC1 and GCLC-like), to zinc transporters (ZNT2-like), and metallothionein (MT-like). The evolutionary conservation of these genes within the Crassostrea genus was assessed through phylogenetic analysis. Further, these genes were evaluated by qPCR in the laboratory exposed oysters. All target genes exhibited significant upregulation upon exposure to Zn at both 850 and 4500 µg L-1, except for GCLC-like, which showed upregulation only at the higher concentration of 4500 µg L-1. This result suggests distinct activation thresholds and complex interactions among these genes in response to varying Zn concentrations. Our study provides insights into the molecular responses of C. gasar to Zn, adding valuable tools for monitoring metal pollution in marine ecosystems using the mangrove oyster as a sentinel organism.


Subject(s)
Crassostrea , Transcriptome , Water Pollutants, Chemical , Zinc , Animals , Crassostrea/genetics , Crassostrea/metabolism , Zinc/metabolism , Water Pollutants, Chemical/toxicity , Biomarkers/metabolism
2.
Fish Shellfish Immunol ; 149: 109534, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575040

ABSTRACT

Zinc is one of the essential microelements for the metabolism of animals. Zinc nanoparticles may have higher bioavailability due to their low specific surface area, facilitating absorption by fish. The present study aimed to evaluate the effects of supplementation with different zinc-based products on the growth and health of Nile tilapia Oreochromis niloticus. Zinc, in different sizes (nanoparticles or bulk) and forms (inorganic or organic), were used as a supplement in the tilapia diet at a dose of 15 mg kg feed-1 for 60 days. At the end of the feeding trial, production performance, hemato-immunological parameters, activity of antioxidant system enzymes, exposure to Streptococcus agalactiae and zinc concentration in the muscle were examined. After the bacterial challenge, the mean corpuscular hemoglobin concentration (MCHC) significantly increased in the fish treated with organic zinc, inorganic nano zinc, and organic nano zinc, while in the control group (inorganic zinc), MCHC remained unchanged. Regarding defense cells, dietary inorganic nano zinc increased the number of basophils (1.50 ± 1.10) compared to organic zinc (0.80 ± 0.90). Lymphocyte count increased after the challenge only in the organic zinc treatments (bulk and nanoparticles). Neutrophils decreased in the control (inorganic zinc) (2.20 ± 1.70) and inorganic nano zinc (2.60 ± 2.70) treatments after the challenge. When compared before and after the bacterial challenge, the plasma antimicrobial titer significantly increased after the bacterial challenge in all treatments. No significant differences were observed for total proteins, enzymes (SOD and CAT), cumulative survival and zinc deposition on fillet. In conclusion, organic zinc in nanoparticles or bulk size increased Nile tilapia innate defense during bacterial infection. However, the other parameters evaluated were not affected by zinc particle size or form (organic or inorganic), indicating that further evaluations should be conducted with organic zinc in nanoparticles or bulk size in the tilapia diet.


Subject(s)
Animal Feed , Cichlids , Diet , Dietary Supplements , Fish Diseases , Streptococcal Infections , Streptococcus agalactiae , Zinc , Animals , Cichlids/immunology , Cichlids/growth & development , Dietary Supplements/analysis , Zinc/administration & dosage , Animal Feed/analysis , Diet/veterinary , Streptococcal Infections/veterinary , Streptococcal Infections/immunology , Streptococcus agalactiae/physiology , Fish Diseases/immunology , Random Allocation , Immunity, Innate/drug effects
3.
Mar Pollut Bull ; 201: 116244, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38489909

ABSTRACT

The discharge of sanitary sewage into the bays of the Florianópolis Metropolitan Area (Southern Brazil), has led to the contamination of oyster farms. Consequently, linear alkylbenzenes (LABs) were quantified in the sediment, and the biochemical responses in gills and digestive gland of oysters from six farms were assessed. Our findings revealed elevated levels of LABs in the sediment of the Imaruim and Serraria farms. Additionally, alterations were observed in the antioxidant enzymes: catalase, glutathione peroxidase and superoxide dismutase in both oyster tissue from the Serraria, Santo Antonio de Lisboa and Sambaqui farms. Furthermore, correlation analyses indicated strong and moderate associations between biochemical responses, organic contaminants, and certain physicochemical parameters. Consequently, our results demonstrated the activation of the antioxidant system in oysters, representing a protective response to the presence of sanitary sewage and other contaminants. Therefore, we propose the utilization of biochemical biomarkers for monitoring the environmental quality of farms.


Subject(s)
Crassostrea , Water Pollutants, Chemical , Animals , Antioxidants/analysis , Sewage/analysis , Water Pollutants, Chemical/analysis , Aquaculture , Environmental Monitoring/methods
4.
Sci Total Environ ; 925: 171679, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38494031

ABSTRACT

Coastal environments, such as those in the Santa Catarina State (SC, Brazil), are considered the primary receptors of anthropogenic pollutants. In this study, our objective was to evaluate the levels of emerging contaminants (ECs) and persistent organic pollutants (POPs) in indigenous Crassostrea gasar oysters from different regions of SC coast in the summer season (March 2022). Field collections were conducted in the São Francisco do Sul, Itajaí, Florianópolis and Laguna coastal zones. We analyzed the bioaccumulation levels of 75 compounds, including antibiotics (AB), endocrine disruptors (ED), non-steroidal anti-inflammatory drugs (NSAIDs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides. Furthermore, we assessed biomarker responses related to biotransformation, antioxidant defense, heat shock protection and oxidative damage in oysters' gills. Prevalence of ECs was observed in the central and southern regions, while the highest concentrations of POPs were detected in the central-northern regions of SC. Oysters exhibited an induction in biotransformation systems (cyp2au1 and cyp356a1, sult and GST activity) and antioxidant enzymes activities (SOD, CAT and GPx). Higher susceptibility to lipid peroxidation was observed in the animals from Florianópolis compared to other regions. Correlation analyses indicated possible associations between contaminants and environmental variables in the biomarker responses, serving as a warning related to climate change. Our results highlight the influence of anthropogenic activities on SC, serving as baseline of ECs and POPs levels in the coastal areas of Santa Catarina, indicating more critical zones for extensive monitoring, aiming to conserve coastal regions.


Subject(s)
Crassostrea , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Crassostrea/physiology , Brazil , Antioxidants/analysis , Biomarkers/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
5.
Mar Environ Res ; 196: 106433, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38489918

ABSTRACT

The study aimed to obtain environmentally relevant microfibers (MFs) from polyester fabric and assess their impact on the oyster Crassostrea gasar. MFs were obtained by grinding the fabric, and their accumulation in oysters gills and digestive glands was analyzed after exposure to 0.5 mg/L for 2 and 24 h. Additionally, a 48 h depuration was conducted on the oysters exposed for 24 h. Sublethal effects were assessed in oysters exposed for 24 h and depurated for 48 h, using biomarkers like Catalase (CAT), Glutathione S-transferase (GST), and Glutathione Peroxidase (GPx), along with histological analyses. Polyester fabric grinding produced significant MFs (average length: 570 µm) with degraded surface and increased malleability. Oysters showed increased MF accumulation in digestive glands post-exposure, with no impact on antioxidant enzymes. Depuration decreased MFs accumulation. Histological analysis revealed accumulation in the stomach and brown cells, possibly indicating inflammation. This raises concerns about MFs bioaccumulation in marine organisms, impacting the food chain and safety.


Subject(s)
Crassostrea , Water Pollutants, Chemical , Animals , Crassostrea/metabolism , Polyesters/metabolism , Antioxidants , Eating , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
6.
Mar Environ Res ; 194: 106309, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38169221

ABSTRACT

This study aimed to carry out a general diagnosis of the contamination of the coastal marine environment of the Santa Catarina state (SC, Brazil) by different classes of environmental pollutants, as well as to evaluate possible adverse effects of the contaminants on biochemical biomarkers of oysters, Crassostrea gasar and Crassostrea rhizophorae. 107 chemicals were evaluated in water, sediment and oyster samples from nine sites along the coastline of SC. We also examined various biochemical biomarkers in the oysters' gills and digestive glands to assess potential effects of contaminants. In general, the northern and central regions of the littoral of SC presented higher occurrences and magnitudes of contaminants than the southern region, which is probably related to higher urbanization of center and northern areas of the littoral. The biomarker analysis in the oysters reflected these contamination patterns, with more significant alterations observed in regions with higher levels of pollutants. Our results may serve as a first baseline for future and more extensive monitoring actions and follow-up of the degree of contamination in the state, allowing for inspection actions and management of areas most affected by marine pollutants.


Subject(s)
Crassostrea , Environmental Pollutants , Water Pollutants, Chemical , Animals , Brazil , Biomarkers , Gills , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
7.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 374-382, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37899705

ABSTRACT

The nutritional quality of food can affect the health of animals. This study examined the effects of dietary supplementation with Lippia sidoides essential oil (LSEO) on the physiology of Danio rerio. Four hundred fourty-eight fish were divided into 28 tanks and subjected to different dietary treatments: a control group with no supplementation, a group with grain alcohol supplementation and five groups with LSEO at concentrations of 0.25%, 0.50%, 0.75%, 1.00% and 1.25%. After 15 days, histological and enzymatic analyses were conducted. The 0.25% LSEO group exhibited lower glutathione peroxidase and catalase activity compared to the 1.00% group. Additionally, fish in the 0.25% LSEO group showed improved liver, kidney and splenic integrity indices. These findings support the inclusion of 0.25% LSEO in the diet of D. rerio, suggesting potential benefits for fish physiology and encouraging further research on phytotherapeutics in fish diets.


Subject(s)
Lippia , Oils, Volatile , Animals , Antioxidants/pharmacology , Oils, Volatile/pharmacology , Zebrafish , Diet/veterinary , Dietary Supplements , Animal Feed
8.
Xenobiotica ; 53(4): 309-319, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37476967

ABSTRACT

Personal care products, such as UV filters, are frequently present in aquatic ecosystems, but studies on their impact on marine organisms are still scarce. Here we addressed the effects of benzophenone-3 (BP-3) on the antioxidant status of Perna perna mussels exposed to concentrations of 0.1 and 3 µg.L-1 for 72 h and 7 days. Glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), glucose-6-phosphate dehydrogenase (G6PDH) activity and lipoperoxidation (MDA) were evaluated in the gills. A significant reduction (p < 0.05) in the activity of G6PDH and GPx was observed after exposure for 7 days to 0.1 µg.L-1. However, no significant differences were observed in GST activity and MDA levels, independently of the exposure time. Principal component analysis (PCA) showed an association of BP-3 highest concentration with GR and MDA at 72 h and only with GR at 7 days of exposure. Similarly, the integrated biomarker response (IBR) demonstrated GR and MDA alterations. In conclusion, environmentally relevant concentrations of BP-3 altered antioxidant and auxiliary enzymes, which could cause long-term damage to P.perna mussels. The need to implement more efficient techniques in wastewater treatment systems is pointed out, especially in summer, when UV filters are used more frequently and abundantly.


Subject(s)
Perna , Water Pollutants, Chemical , Animals , Antioxidants , Perna/physiology , Ecosystem , Catalase , Glutathione Transferase , Glutathione Reductase/pharmacology , Glutathione Peroxidase/pharmacology , Water Pollutants, Chemical/toxicity , Biomarkers
9.
Article in English | MEDLINE | ID: mdl-37169212

ABSTRACT

Chrysene (CHR) is among the most persistent polycyclic aromatic hydrocarbons (PAH) in water and a priority compound for pollutants monitoring, due to its carcinogenic, mutagenic and genotoxic potential. Aquatic animals exposed to CHR may present alterations of biomarkers involved in the biotransformation and oxidative stress-related parameters. The aim of this study was to investigate differences in antioxidant and biotransformation (phase I and II) systems of Crassostrea gigas, C. gasar and C. rhizophorae and its effects resulting from CHR exposure. Adult oysters of these species were exposed to 10 µg L-1 of CHR for 24 h and 96 h. In gills, the transcripts CYP1-like, CYP2-like, CYP2AU1-like, GSTO-like, MGST-like, SULT-like were evaluated after 24 h of exposure. The activity of SOD, CAT, GPx, GR and G6PDH were analyzed in gills and digestive glands after 96 h of exposure. CHR bioaccumulated in tissues. Differences in the remaining levels of CHR in water after 96 h were observed in aquaria containing C. gigas or C. gasar oysters and may be associated to the different filtration rates between these species. Downregulate of biotransformation genes were observed in gills of C. gasar (CYP2AU1-like and GSTO-like) and C. rhizophorae (CYP1-like1, CYP2-like, MGST-like and SULT-like), suggesting that biotransformation responses may be species-specific. Differential activity of antioxidant enzymes were observed in gills and digestive gland of oysters exposed to CHR. Biochemical responses suggested that C. gigas and C. gasar are more responsive to CHR. Differential responses observed among the three Crassostrea species can be related to evolutionary differences, ecological niches and adaptation to environment.


Subject(s)
Crassostrea , Water Pollutants, Chemical , Animals , Antioxidants/metabolism , Crassostrea/genetics , Chrysenes/metabolism , Chrysenes/pharmacology , Biotransformation , Water/metabolism , Water Pollutants, Chemical/metabolism , Gills/metabolism
10.
Article in English | MEDLINE | ID: mdl-37137384

ABSTRACT

Metal contamination impacts various aquatic species, and mollusk bivalves are appropriate sentinel organisms in coastal pollution assessment. Metal exposure can disrupt homeostasis, alter gene expression, and harm cellular processes. However, organisms have evolved mechanisms to regulate metal ions and counteract their toxicity. This study examined the effect of acute cadmium (Cd) and zinc (Zn) on metal-related gene expression in gills of Crassostrea gasar following 24 and 48 h of laboratory exposure. We focused on Zn transport, metallothionein (MT), glutathione (GSH) biosynthesis, and calcium (Ca) transporter genes to understand the underlying Cd and Zn-accumulating mechanisms that prevent metal toxicity. Our findings revealed increased Cd and Zn levels in oyster gills, with significantly higher accumulation after 48 h. C. gasar accumulated high Cd concentrations even in scarce conditions and increased Zn levels, suggesting a strategy to cope with toxicity. While no significant gene expression differences were observed after 24 h, the increased metal accumulation after 48 h led to upregulation of CHAC1, GCLC, ZnT2, and MT-like genes in oysters exposed to Cd, and increased ZnT2-like expression following exposure to higher Cd/Zn mixtures. We found evidence of oysters may mobilize metal-related genes to mitigate Cd-induced toxicity by both chelating metals and/or reducing their intracellular concentrations. The observed genes upregulation also indicates their sensitivity to changes in metal bioavailability. Overall, this study offers insights into oyster mechanisms for coping with metal toxicity and suggests ZnT2, MT, CHAC1, and GCLC-like as molecular biomarkers for monitoring aquatic metal pollution using C. gasar as sentinel species.


Subject(s)
Crassostrea , Water Pollutants, Chemical , Animals , Cadmium/metabolism , Zinc/toxicity , Zinc/metabolism , Crassostrea/genetics , Crassostrea/metabolism , Water Pollutants, Chemical/metabolism , Metals/metabolism , Glutathione/metabolism , Biomarkers/metabolism , Gene Expression , Metallothionein/genetics , Metallothionein/metabolism
11.
Chemosphere ; 311(Pt 1): 136985, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36306960

ABSTRACT

Oysters are frequently used as sentinel organisms for monitoring effects of contaminants due to their sessile, filtering habits and bioaccumulation capacity. These animals can show elevated body burden of contaminants, such as pyrene (PYR). PYR can be toxic at a molecular level until the whole oyster, which can show reproductive and behavioral changes. Considering that biologic parameters, such as gender or reproductive stage can interfere in the toxic effects elicited by contaminants uptake, the aim of this study was to evaluate some molecular and histological responses in females and males of oyster Crassostrea gasar exposed to PYR (0.25 and 0.5 µM) for 24 h at the pre-spawning stage. PYR concentrations were analyzed in water and in tissues of female and male oysters. Gene transcripts related to biotransformation (CYP3475C, CYP2-like, CYP2AU1, CYP356A, GSTO-like, GSTM-like, SULT-like), stress (HSP70), and reproduction (Vitellogenin, Glycoprotein) were quantified in gills. In addition, histological analysis and histo-localization of CYP2AU1 mRNA transcripts in gills, mantle and digestive diverticulum were carried out. Females and males in pre-spawning stage bioconcentrated PYR in their tissues. Males were more sensitive to PYR exposure. CYP2AU1 transcripts were higher in males (p < 0.05), as well as tubular atrophy was observed only in males exposed to PYR (p < 0.05). As expected, vitellogenin transcripts were lower in males (p < 0.05). Given these results, it is suggested that levels of CYP2AU1 be a good biomarker of exposure to PYR in oyster C. gasar and that it is important to consider the gender for the interpretation of biomarker responses.


Subject(s)
Crassostrea , Water Pollutants, Chemical , Female , Animals , Male , Crassostrea/metabolism , Vitellogenins , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Pyrenes/toxicity , Biomarkers
12.
Chemosphere ; 307(Pt 4): 136039, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35985385

ABSTRACT

The levels of linear alkylbenzenes (LABs) and the occurrence of microplastics (MPs) in the oysters Crassostrea gigas were evaluated in six farming areas in southern Brazil. The results revealed higher concentrations of LABs in oyster tissue from the Serraria (1977 ± 497.7 ng g-1) and Imaruim (1038 ± 409.9 ng g-1) sites. Plastic microfibers were found in oysters from all locations with values from 0.33 to 0.75 MPs per oyster (0.27-0.64 MPs per gram) showing the ubiquitous presence of this contaminant in the marine environment, which could be considered a threat to farming organisms. In addition, elements such as Ti, Al, Ba, V, Rb, Cr, and Cu were found in the chemical composition of the microfibers, suggesting MPs as vectors of inorganic compounds. A positive correlation between LABs and thermotolerant coliforms suggests that sewage discharges are the main source of contamination in these oysters cultured for human consumption. The present study highlights the need for efficient wastewater treatment plants and the implementation of depuration techniques in oysters from farming areas.


Subject(s)
Crassostrea , Water Pollutants, Chemical , Animals , Aquaculture , Brazil , Humans , Microplastics , Plastics , Sewage/chemistry , Water Pollutants, Chemical/analysis
13.
Chemosphere ; 307(Pt 1): 135735, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35868530

ABSTRACT

Anthropogenic activities in coastal regions cause risks to the environmental and human health. Due to the carcinogenic and mutagenic potential, polycyclic aromatic hydrocarbons (PAH) are considered priority for monitoring. Most of the Brazilian production of Crassostrea gigas oysters are placed in the Bays of Santa Catarina Island. The aim of this study was to evaluate molecular responses (phase I and II of biotransformation and antioxidant defense) of C. gigas from six oyster farming areas potentially contaminated by sanitary sewage in Florianópolis Metropolitan (SC, Brazil): Santo Antônio de Lisboa, Sambaqui, Serraria, Caieira, Tapera, Imaruim. We evaluated the transcript levels of CYP1A1-like, CYP2-like, CYP2AU2-like, CYP356A1, GSTA1A-like, GSTO.4A-like, SULT-like, SOD-like and CAT-like by qRT-PCR. Only oysters from Caieira showed levels of thermotolerant coliforms allowed by the law. Chemicals analyses in soft tissues of oysters showed low to average levels of PAH in all monitored areas. Enhanced transcript levels of phase I (CYP1A1-like, CYP3564A1-like, CYP2-like and CYP2AU2-like) were observed in oysters from Serraria and Imaruí, suggesting higher biotransformation activity in these farming areas. Regarding phase II of biotransformation, GSTO.4A-like was up-regulated in oysters from Imaruí compared to Caieira and Santo Antônio de Lisboa. An upregulation of SOD-like and CAT-like were observed in oysters from Imaruí and Serraria, suggesting that oysters from these sites are facing higher prooxidant conditions compared to other areas. By integrating the biological and chemical data it is suggested that human-derived contaminants are affecting the oyster metabolism in some farming areas.


Subject(s)
Crassostrea , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Anthropogenic Effects , Antioxidants/metabolism , Aquaculture , Bays , Brazil , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Gills/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Sewage/chemistry , Superoxide Dismutase/metabolism , Water Pollutants, Chemical/analysis
14.
Mar Pollut Bull ; 166: 112225, 2021 May.
Article in English | MEDLINE | ID: mdl-33677332

ABSTRACT

The ubiquitous presence of contaminants in the marine environment is considered a global threat to marine organisms. Heavy metals and microplastics are two distinct classes of pollutants but there are interactions between these two stressors that are still poorly understood. We examined the potential relationship between heavy metals (Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Ba, Hg, Pb) and microplastic particles in oysters sampled along the Paranaguá Estuarine System. The results suggested high levels of As and Zn in the bivalves, which are destined for human consumption. Microplastic particles were found in oysters from all sampled locations, demonstrating the spread of this pollutant in the marine environment and its ability to bioaccumulate in oysters. However, our data did not demonstrate a direct relationship between microplastics and heavy metals, suggesting that these particles are not the main route for heavy metal contamination of oysters in the Paranaguá Estuarine System.


Subject(s)
Crassostrea , Metals, Heavy , Water Pollutants, Chemical , Animals , Brazil , Environmental Monitoring , Humans , Metals, Heavy/analysis , Microplastics , Plastics , Water Pollutants, Chemical/analysis
15.
Mar Environ Res ; 165: 105252, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33465683

ABSTRACT

The Laguna Estuarine System (LES), southern Brazil, suffers impacts from anthropogenic activities, releasing contaminants into the ecosystem. This study evaluated changes in biochemical and molecular biomarkers and contaminants concentrations in oysters Crassostrea gasar transplanted and kept for 1.5 and 7 days at three potentially contaminated sites (S1, S2, and S3) at LES. Metals varied spatiotemporally; S1 exhibited higher Ag and Pb concentrations, whereas Cd was present in S3. S2 was a transition site, impacted by Ag, Pb, or Cd, depending on the period. Organic contaminants concentrations were higher before transplantation, resulting in the downregulation of biotransformation genes transcripts levels. Phase II-related genes transcripts and metals showed positive correlations. Decreased levels of HSP90-like transcripts and antioxidant enzymes activity were related to increased pollutant loads. Integrated biomarker response index (IBR) analysis showed S1 and S3 as the most impacted sites after 1.5 and 7 days, respectively. Regardless of the scenario, LES contaminants pose a significant threat to aquatic biota.


Subject(s)
Crassostrea , Water Pollutants, Chemical , Animals , Biomarkers , Brazil , Ecosystem , Environmental Monitoring , Estuaries , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
16.
Mar Pollut Bull ; 161(Pt A): 111729, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33039793

ABSTRACT

Plastic pollution is one of the major issues impacting on the marine environment. Plastic polymers are known to leach industrial chemicals and associated contaminants. In this review, we focused on assessing the global distribution and concentration of two polystyrene-derived contaminants, hexabromocyclododecanes (HBCDs) and styrene oligomers (SOs), in marine sediments and seawater. Overall, most of the studies were carried out in Asia, North America, and Europe. Relatively high concentrations of these contaminants are generally attributed to the proximity of urban cities, plastic industries, polystyrene pollution, and aquaculture. Moreover, the concentrations in sediments are many times higher than in seawater. HBCDs were found to be a negligible risk to marine biota when compared to the ecotoxicological endpoints. However, realistic concentrations of SOs could compromise the wellbeing of certain species in highly polluted sites. The future perspectives and research were discussed.


Subject(s)
Polystyrenes , Water Pollutants, Chemical , Asia , Environmental Monitoring , Europe , North America , Polystyrenes/analysis , Water Pollutants, Chemical/analysis
17.
Mar Pollut Bull ; 151: 110877, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32056653

ABSTRACT

Microplastic pollution is a problem of global scale, posing a threat to marine biota. To determine the current state of microplastic pollution on four popular sandy beaches of the coast of Lima, Peru, a sampling campaign was carried out in both intertidal and supralittoral zones. Microplastic abundance, type, size, color and distribution were recorded. The overall microplastic abundance was of the same order of magnitude as previous data obtained in Peru. Foams were the most abundant (78.3%) microplastic type. Statistical analyses revealed significant differences between sites and zones. High variability of microplastic abundance was found among adjacent beaches and zones. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed that all foams were identified as polystyrene. The present results revealed an alarming level of microplastics present on Peruvian sandy beaches, but information about the sources, local dynamics and impacts of microplastics in this region are scarce, and thus further research is needed.


Subject(s)
Environmental Monitoring , Microplastics/analysis , Water Pollutants, Chemical , Peru , Plastics
SELECTION OF CITATIONS
SEARCH DETAIL
...