Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Res ; 263: 127144, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35908425

ABSTRACT

Studies about biodegradation potential in soils often refer to artificially contaminated and simplified systems, overlooking the complexity associated with contaminated sites in a real context. This work aims to provide a holistic view on microbiome assembly and functional diversity in the model site SIN Brescia-Caffaro (Italy), characterized by historical and uneven contamination by organic and inorganic compounds. Here, physical and chemical analyses and microbiota characterization were applied on one-hundred-twenty-seven soil samples to unravel the environmental factors driving bacterial community assembly and biodegradation potential in three former agricultural fields. Chemical analyses showed a patchy distribution of metals, metalloids and polychlorinated biphenyls (PCB) and allowed soil categorization according to depth and area of collections. Likewise, the bacterial community structure, described by molecular fingerprinting and 16S rRNA gene analyses, was significantly different according to collection site and depth. Pollutant concentrations (i.e., hexachloro-biphenyls, arsenic and mercury), nitrogen content and parameters related to soil texture were identified as main drivers of microbiota assembly, being significantly correlated to bacterial community composition. Moreover, bacteria putatively involved in the aerobic degradation of PCBs were enriched over the total bacterial community in topsoils, where the highest activity was recorded using fluorescein hydrolysis as proxy. Metataxonomic analyses revealed the presence of bacteria having metabolic pathways related to PCB degradation and tolerance to heavy metals and metalloids in the topsoil samples collected in all areas. Overall, the provided dissection of soil microbiota structure and its degradation potential in the SIN Brescia-Caffaro can contribute to target specific areas for rhizoremediation implementation. Metagenomics studies could be implemented in the future to understand if specific degradative pathways are present in historically polluted sites characterized by the co-occurrence of multiple classes of contaminants.


Subject(s)
Metalloids , Polychlorinated Biphenyls , Soil Pollutants , Biodegradation, Environmental , Metalloids/analysis , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism , RNA, Ribosomal, 16S/genetics , Soil/chemistry , Soil Microbiology , Soil Pollutants/metabolism
2.
Sci Total Environ ; 747: 141477, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33076211

ABSTRACT

The agricultural areas of a historically contaminated National Relevance Site (SIN Brescia Caffaro) in Italy are an ideal case for studying the long term vertical and horizontal movement of polychlorinated biphenyls (PCBs) in soil. Here, a former large producer of PCBs (Caffaro S.p.A.) discharged its wastewaters, contaminated by PCBs and other chemicals, to a ditch used for about 80 years as source of irrigation waters for the adjacent agricultural areas. This caused a spread of contamination along both a vertical and a horizontal soil gradient. PCB concentrations of about 80 congeners, including PCB 209, peculiar of Caffaro production, were measured in three areas, selected for their different soil properties and cultivation history. The contamination levels with depth ranged from about 30 mg/kg dry weight (d.w.) of soil in the top (plow) layer to less than 0.1 mg/kg d.w. at the depth of 1 m. The concentrations varied also horizontally, since each field was surface irrigated from the short edge of each field, showing that PCBs could spread with length halving the initial concentrations in the topsoil only after about 30-35 m. The concentration gradients detected were explained considering the historic soil use and its change with time, the pedological properties as well as PCB physico-chemical parameters and halflives, developing equations which could be employed as guidance tools for evaluating PCBs (and similar chemicals) movement and direct further studies.

3.
Environ Sci Technol ; 54(16): 10000-10011, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32687327

ABSTRACT

In this paper, a new data set of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) half-lives (HLs) in soil is presented. Data are derived from a greenhouse experiment performed with an aged contaminated soil under semi-field conditions, obtained from a National Relevance Site (SIN) located in Northern Italy (SIN Brescia-Caffaro). Ten different treatments (combination of seven plant species with different soil conditions) were considered together with the respective controls (soil without plants). The ability of the plants to stimulate the biodegradation of these compounds was evaluated by measuring the PCDD/F concentration reduction in soil over a period of 18 months. The formation of new bound residues was excluded by using roots as a passive sampler of bioaccessible concentrations. The best treatment which significantly reduced PCDD/F concentrations in soil was the one with Festuca arundinacea (about 11-24% reduction, depending on the congener). These decreases reflected in HLs ranging from 2.5 to 5.8 years. Simulations performed with a dynamic air-vegetation-soil model (SoilPlusVeg) confirmed that these HLs were substantially due to biodegradation rather than other loss processes. Because no coherent PCDD/F degradation HL data sets are currently available for soil, they could substantially improve the predictions of soil remediation time, long-range transport, and food chain transfer of these chemicals using multimedia fate models.


Subject(s)
Polychlorinated Dibenzodioxins , Soil Pollutants , Dibenzofurans , Dibenzofurans, Polychlorinated/analysis , Environmental Monitoring , Italy , Polychlorinated Dibenzodioxins/analysis , Soil , Soil Pollutants/analysis
4.
Sci Total Environ ; 686: 484-496, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31185397

ABSTRACT

This paper describes the results of a rhizoremediation greenhouse experiment planned to select the best plant species and soil management for the bioremediation of weathered polychlorinated biphenyls (PCBs). We evaluated the ability of different plant species to stimulate activity and diversity of the soil microbial community leading to the reduction of PCB concentrations in a heavily contaminated soil (at mg kg-1 dw level), of the national priority site for remediation (SIN) "Brescia-Caffaro" in Italy. Biostimulation was determined in large size (6kg) pots, to reflect semi-field conditions with a soil/root volume ratio larger than in most rhizoremediation experiments present in the literature. In total, 10 treatments were tested in triplicates comparing 7 plant species (grass and trees) and 5 soil/cultivation conditions (i.e., only one plant species, plant consociation, redox cycle, compost or ammonium thiosulfate addition) with the appropriate unplanted controls. After 18months of biostimulation the overall reduction of total PCBs varied between 14 and 20%. Microbial analysis revealed a shift in the microbial community structure over time and showed that all the planted treatments significantly enhanced microbial hydrolytic activity and the abundance of bacterial populations, including potential PCB degraders, in the soil surrounding plant roots. The plant species most effective in reducing the contaminant concentrations were Festuca arundinacea cultivated adding compost or in consociation with Cucurbita pepo ssp. pepo and Medicago sativa cultivated with Rhizobium spp. and mycorrhizal fungi; they reduced total PCB concentrations of about 20% and showed the significant depletion of a high number of PCB congeners (29, 37 and 23, respectively, out of the 79 measured). Our results suggest that these plant species are particularly efficient in increasing soil PCB bioavailability and in stimulating microbial degradation. They could be used in field rhizoremediation strategies to enhance the natural attenuation process and reduce PCB levels in historically contaminated sites.


Subject(s)
Biodegradation, Environmental , Polychlorinated Biphenyls/analysis , Soil Pollutants/analysis , Agriculture , Cucurbita , Festuca , Medicago sativa , Rhizosphere , Soil/chemistry , Soil Microbiology , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...