Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Saudi J Biol Sci ; 31(3): 103942, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38327660

ABSTRACT

In the current study the assessment of the antimicrobial and phytochemical properties of Cassia fistula, Musa paradisiaca, Ficus religiosa and Murraya koenigii plants extracts was carried out. The antibacterial potential of these plants extracts was tested against S. aureus and E. coli. The Cassia fistula and Ficus religiosa leaves showed the larger zone of inhibition in aqueous and butanolic extract respectively against Escherichia coli. Musa paradisiaca and Murraya koenigii leaves showed larger zone of inhibition in ethanolic extract against S. aureus. Qualitative phytochemical analysis showed the presence of alkaloids, flavonoids, phenols, terpenoids, steroids, glycosides, saponins, carbohydrates, proteins and tannins in all extracts while phylobatannins, emodins, anthocyanins and leucoanthocyanins were not present in these extracts. Quantitative phytochemical analysis showed the highest alkaloid content in the Murraya koenigii leaves. Highest tannin content and flavonoid content was found in Ficus religiosa leaves, while highest phenolic content was found in case of Cassia fistula. In addition to this antioxidant potential of all the extracts was determined. Musa paradisiaca leaves showed highest antioxidant potential as compared to other plant extracts. In silico analysis of bioactive components present in plant extracts was performed by molecular docking. The rutin and Glu from Musa paradisiaca and Murraya koenigii respectively, were docked with Glycogen Synthase Kinase 3 beta (1GSK-3beta) protein. Quercetin and rutin from Cassia fistula and Ficus religiosa respectively, were docked with C- reactive protein (CRP). The tested bioactive compounds showed good binding affinity with significant number of hydrogen bonds and can be used as a good alternative of synthetic drugs to treat rheumatism and wounds.

2.
Food Chem (Oxf) ; 8: 100191, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38259869

ABSTRACT

Chymosin, an aspartic protease present in the stomachs of young ruminants like cows (bovine), causes milk coagulation and cheese production through the breakdown of κ-casein peptide bonds at the Met105-Phe106 site. Bovine chymosin is first synthesized as a pre-prochymosin that is cleaved to produce the mature chymosin protein. Despite significant strides in research, our understanding of this crucial enzyme remains incomplete. The purpose of this work was to perform in silico evolutionary and functional analysis and to gain unique insights into the structure of this protein. For this, the sequence of Bos taurus chymosin from UniProt database was subjected to various bioinformatics analyses. We found that bovine chymosin is a low molecular weight and hydrophilic protein that has homologs in other Bovidae species. Two active sites of aspartic peptidases, along with a functional domain, were identified. Gene Ontology analysis further confirmed chymosin's involvement in proteolysis and aspartic endopeptidase activity. Potential disordered residues and post-translational modification sites were also uncovered. It was revealed that the secondary structure of bovine chymosin is comprised of beta strands (44.27%), coils (43.65%), and alpha helices (12.07%). A highly optimized 3D structure was also obtained. Moreover, crucial protein-protein interactions were unveiled. Altogether, these findings provide valuable insights that could guide future research on bovine chymosin and its biological roles.

3.
Int J Biol Macromol ; 263(Pt 2): 129517, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38266833

ABSTRACT

Existing drugs that are being used to treat type-2 diabetes mellitus are associated with several side effects; thus, exploring potential drug candidates is still an utter need these days. Hybrids of indenoquinoxaline and hydrazide have never been explored as antidiabetic agents. In this study, a series of new indenoquinoxaline-phenylacrylohydrazide hybrids (1-30) were synthesized, structurally characterized, and evaluated for α-amylase and α-glucosidase inhibitory activities, as well as for their antioxidant properties. All scaffolds exhibited varying degrees of inhibitory activity against both enzymes, with IC50 values ranging from 2.34 to 61.12 µM for α-amylase and 0.42 to 54.72 µM for α-glucosidase. Particularly, compounds 10, 16, 17, 18, 24, and 25 demonstrated the highest efficacy in inhibiting α-amylase, while compounds 6, 7, 8, 10, 12, 14, 13, 16, 17, 18, 24, and 25 were the most effective α-glucosidase inhibitors, compared to standard acarbose. Moreover, most of these compounds displayed substantial antioxidant potential compared to standard butylated hydroxytoluene (BHT). Kinetics studies revealed competitive inhibition modes by compounds. Furthermore, a comprehensive in silico study and toxicity prediction were also conducted, further validating these analogs as potential drug candidates. The structured compounds demonstrated enhanced profiles, underscoring their potential as primary candidates in drug discovery.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/drug therapy , Antioxidants/pharmacology , Antioxidants/therapeutic use , alpha-Glucosidases/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/therapeutic use , alpha-Amylases/metabolism , Molecular Docking Simulation , Structure-Activity Relationship
4.
Environ Sci Pollut Res Int ; 31(4): 5610-5624, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38123776

ABSTRACT

The determinants of environmental degradation have been investigated many times by utilizing carbon dioxide emissions and/or ecological footprint. However, these traditional environmental degradation indicators do not consider the supply side of environmental problems. Therefore, this study focuses on the dynamic influence of financial development, energy efficiency, economic growth, and technological innovation on environmental degradation in India through the load capacity factor, including both the supply and demand sides of environmental problems. For that purpose, the recently developed dynamically simulated autoregressive distributed lag (ARDL) method is employed using the annual time-series data extending from 1980-2020. The dynamically simulated ARDL results demonstrate that financial development, economic growth, and technological innovation have a dynamic adverse impact on the load capacity factor, whereas energy efficiency has a positive dynamic influence on environmental quality. In addition, the results support the validity of the environmental Kuznets curve hypothesis as the negative effect of economic growth on environmental quality decreases over time. Based on the study findings, policy recommendations are provided for India. Finally, this study utilizing load capacity factor as an indicator for environmental quality will provide new topics in exploring the determinants of environmental degradation.


Subject(s)
Conservation of Energy Resources , Inventions , Economic Development , Carbon Dioxide/analysis , India , Renewable Energy
5.
Expert Opin Ther Pat ; 33(12): 841-864, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38115554

ABSTRACT

INTRODUCTION: Schiff bases are compounds with characteristic features of azomethine linkage (-C=N-). Schiff bases are capable of coordinating with metal ions via azomethine nitrogen. Schiff base derivatives and their metal complexes are known for intriguing novel therapeutic properties. In organic synthesis, the Schiff base reaction is prime in creating the C-N bond. Synthetic accessibility and structural diversity are the salient features for facile synthesis of Schiff base hybrids via a condensation reaction between an aldehyde/ketone and primary amines. AREA COVERED: This review aims to provide a comprehensive overview of the commendable medicinal applications of Schiff base derivatives and their metal complexes patented from 2016 to 2023. EXPERT OPINION: Schiff base derivatives are exceptional molecules for their assorted applications in medicinal chemistry. Several Schiff base products are marketed as drugs, and plenty of room is available for the purposive synthesis of new compounds in a diverse pool of disciplines. Expansion in the derivatization of Schiff bases in innumerable directions with multitudinous applications makes them 'magical molecules.' These compounds have proved extraordinary, from medicinal chemistry to other fields outside medicine. This review covers the therapeutic importance of Schiff base derivatives and aims to cover the patents published in recent years (2016-2023).


Subject(s)
Azo Compounds , Coordination Complexes , Thiosemicarbazones , Humans , Coordination Complexes/chemistry , Chemistry, Pharmaceutical , Schiff Bases/chemistry , Patents as Topic , Ligands
6.
Arch Pharm (Weinheim) ; 356(12): e2300384, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37806747

ABSTRACT

A library of 22 derivatives of 1,3,4-oxadiazole-2-thiol was synthesized, structurally characterized, and assessed for its potential to inhibit α-amylase, α-glucosidase, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and antioxidant activities. Most of the tested compounds demonstrated good to moderate inhibition potential; however, their activity was lower than that of the standard acarbose. Significantly, compound 3f exhibited the highest inhibition potential against α-glucosidase and α-amylase enzymes, with IC50 values of 18.52 ± 0.09 and 20.25 ± 1.05 µM, respectively, in comparison to the standard acarbose (12.29 ± 0.26; 15.98 ± 0.14 µM). Compounds also demonstrated varying degrees of inhibitory potential against AChE (IC50 = 9.25 ± 0.19 to 36.15 ± 0.12 µM) and BChE (IC50 = 10.06 ± 0.43 to 35.13 ± 0.12 µM) enzymes compared to the standard donepezil (IC50 = 2.01 ± 0.12; 3.12 ± 0.06 µM), as well as DPPH (IC50 = 20.98 ± 0.06 to 52.83 ± 0.12 µM) and ABTS radical scavenging activities (IC50 = 22.29 ± 0.18 to 47.98 ± 0.03 µM) in comparison to the standard ascorbic acid (IC50 = 18.12 ± 0.15; 19.19 ± 0.72). The kinetic investigations have demonstrated that the compounds exhibit competitive-type inhibition for α-amylase, noncompetitive-type inhibition for α-glucosidase and AChE, and mixed-type inhibition for BChE. Additionally, a molecular docking study was performed on all synthetic oxadiazoles to explore the interaction details of these compounds with the active sites of the enzymes.


Subject(s)
Alzheimer Disease , Diabetes Mellitus , Humans , Butyrylcholinesterase/metabolism , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , alpha-Glucosidases/metabolism , Acarbose , Molecular Docking Simulation , Structure-Activity Relationship , Oxadiazoles/pharmacology , alpha-Amylases
7.
Dose Response ; 21(3): 15593258231200527, 2023.
Article in English | MEDLINE | ID: mdl-37701673

ABSTRACT

Apart from advances in pharmaceutical antidiabetic agents, efforts are being made toward hypoglycemic agents derived from natural sources. Cinnamon has been reported to have significant benefits for human health, particularly as an anti-inflammatory, antidiabetic, and anti-hypertriglyceridemic agent. The phytochemicals in cinnamon can be extracted from different parts of plant by distillation and solvent extraction. These chemicals help in decreasing insulin resistance and can act against hyperglycemia and dyslipidemia, inflammation and oxidative stress, obesity, overweight, and abnormal glycation of proteins. Cinnamon has shown to improve all of these conditions in in vitro, animal, and/or human studies. However, the mechanism of action of active ingredients found in cinnamon remains unclear. The current review presents the outstanding ability of cinnamon derivatives to control diabetes by various pathways modulating insulin release and insulin receptor signaling. It was also found that the type and dosage of cinnamon as well as subject characteristics including drug interactions are likely to affect the response to cinnamon. Future research directions based on this review include the synergistic usage of various cinnamon derivatives in managing and/or preventing diabetes and possible other relevant chronic diseases.

8.
Future Med Chem ; 15(15): 1343-1368, 2023 08.
Article in English | MEDLINE | ID: mdl-37650736

ABSTRACT

Background: Researchers seeking new drug candidates to treat diabetes mellitus have been exploring bioactive molecules found in nature, particularly tetrahydropyridines (THPs). Methods: A library of THPs (1-31) were synthesized via a one-pot multicomponent reaction and investigated for their inhibition potential against α-glucosidase and α-amylase enzymes. Results: A nitrophenyl-substituted compound 5 with IC50 values of 0.15 ± 0.01 and 1.10 ± 0.04 µM, and a Km value of 1.30 mg/ml was identified as the most significant α-glucosidase and α-amylase inhibitor, respectively. Kinetic studies revealed the competitive mode of inhibition, and docking studies revealed that compound 5 binds to the enzyme by establishing hydrophobic and hydrophilic interactions and a salt bridge interaction with His279. Conclusion: These molecules may be a potential drug candidate for diabetes in the future.


Subject(s)
Diabetes Mellitus , Glycoside Hydrolase Inhibitors , Humans , alpha-Amylases/antagonists & inhibitors , alpha-Glucosidases/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Kinetics , Molecular Docking Simulation , Structure-Activity Relationship
9.
Molecules ; 28(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37513349

ABSTRACT

In recent years, significant attention has been given to indoles, a diverse group of heterocyclic compounds widely found in nature that play a crucial role in various bioactive natural and synthetic substances [...].

11.
Int J Biol Macromol ; 241: 124589, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37116840

ABSTRACT

A library of 2-oxopyridine carbonitriles 1-34 was synthesized by regioselective nucleophilic substitution reactions. In the first step, a one-pot multicomponent reaction yield pyridone intermediates. The resulting pyridone intermediates were then reacted with phenacyl halides in DMF and stirred at 100 °C for an hour to afford the desired compounds in good yields. Structures of synthetic molecules were characterized by EI-MS, HREI-MS, 1H NMR, and 13C NMR, and all thirty-four (34) compounds were found to be new. All synthetic compounds were examined for antidiabetic and antioxidant potential. The compounds exhibited α-glucosidase inhibitory potential in the range of IC50 = 3.00 ± 0.11-43.35 ± 0.67 µM and α-amylase inhibition potential in the range of IC50 = 9.20 ± 0.14-65.56 ± 1.05 µM. Among the tested compounds, 1 showed the most significant α-glucosidase inhibitory activity, with an IC50 value of 3.00 ± 0.11 µM, while the most active compound against α-amylase was 6, with an IC50 value = 9.20 ± 0.14 µM. The kinetic studies and analysis indicated that the compounds followed the competitive mode of inhibition. In addition, the molecular docking studies showed the interaction profile of all molecules with the binding site residues of α-glucosidase and α-amylase enzymes.


Subject(s)
Antioxidants , Hypoglycemic Agents , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Structure-Activity Relationship , Molecular Docking Simulation , alpha-Glucosidases/metabolism , Kinetics , alpha-Amylases/chemistry , Pyridones , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Molecular Structure
12.
Saudi J Biol Sci ; 30(2): 103556, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36698857

ABSTRACT

The new concept of functional foods has led to the varieties in the production of foods that provide not only basic nutrition, but can also warrant good health and longevity. This study deals with the production and evaluation of fortified yogurts' with Cinnamomum verum, Elettaria cardamomum, Beta vulgaris and Brassica oleracea. The qualitative and quantitative phytochemical analysis of above mentioned plant extracts before using them into the preparation of functional yoghurt was carried out. The sensory evaluation of enriched yogurts with plant extracts carried out using 9 point hedonic scale. Comparative analysis between enriched yogurts and plain yogurt was carried. The results indicated increase in ash contents, water holding capacity, titratable acidity, total soluble solids, total phenolic content, tannin content, and total flavonoid content in fortified yogurt as compared to plain yogurt. In addition to this fortified yogurts showed greater antioxidant and antibacterial activity in contrast to plain yogurt. However, moisture contents, pH and susceptibility to syneresis of yogurt decreases with the addition of plant extracts. Shelf life of plain and fortified yogurt was determined both at room and refrigerated temperature. The results revealed that shelf life of fortified yogurt was greater as compared to plain yogurt. In silico analysis was carried out by using the galaxy web software. The results indicated that bioactive compounds including ascorbic acid, sinapinic acid, cinnamaldehyde and linalool acetate present in the flavored yogurts binds with angiotensin converting enzyme. All enriched yogurts showed higher anti-Angiotensin converting enzyme activity as compared to plain-yogurt.

13.
Arch Pharm (Weinheim) ; 356(1): e2200400, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36284484

ABSTRACT

Herein, a library of novel pyridone derivatives 1-34 was designed, synthesized, and evaluated for α-amylase and α-glucosidase inhibitory as well as antioxidant activities. Pyridone derivatives 1-34 were synthesized via a one-pot multi-component reaction of variously substituted aromatic aldehydes, acetophenone, ethyl cyanoacetate, and ammonium acetate in absolute ethanol. Synthetic compounds 1-34 were structurally characterized by different spectroscopic techniques. Most of the tested compounds showed more promising inhibition potential than the standard acarbose (IC50 = 14.87 ± 0.16 µM) but compounds 13 and 12 were found to be the most potent compounds with IC50 values of 9.20 ± 0.14 µM and 3.05 ± 0.18 µM against α-amylase and α-glucosidase enzymes, respectively. Compounds 1-34 also displayed moderate antioxidant potential in the range of IC50 = 96.50 ± 0.45 to 189.98 ± 1.00 µM in comparison to the control butylated hydroxytoluene (BHT) (IC50 = 66.50 ± 0.36 µM), in DPPH radical scavenging activities. Additionally, all synthetic derivatives were subjected to a molecular docking study to investigate the interaction details of compounds 1-34 (ligands) with the active site of enzymes (receptors). These results indicate that the newly synthesized pyridone class may serve as promising lead candidates for controlling diabetes mellitus and as antioxidants.


Subject(s)
Antioxidants , alpha-Glucosidases , Antioxidants/pharmacology , Antioxidants/chemistry , alpha-Glucosidases/metabolism , Structure-Activity Relationship , Molecular Docking Simulation , alpha-Amylases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry
14.
Saudi J Biol Sci ; 29(12): 103483, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36389206

ABSTRACT

Cellulases involved in the hydrolysis of cellulose and plays a vital role in different industries like textile, detergent paper and Feed industry. Cellulases have been a prospective target for research by both the academic and industrial sectors because of the intricacy of the enzyme system and the enormous industrial potential. In the present work Thermomyces dupontii, which had previously been isolated and recorded as a promising cellulase producer were used. Both endoglucanases and betaglucosidases were purified to its homogeneity by ammonium sulfate followed by anion exchange and gel filtration chromatography. The recovery and purification fold for endoglucanases and betaglucosidases were 13.7, 10.7 % and 5.9, 2.7, respectively. The molecular weight of endoglucanases and betaglucosidases were estimated as 37 and 66 kDa on SDS-PAGE. Upon kinetic analysis the purified endoglucanases and betaglucosidases showed Km 0.63; 28.56 mg/ml and Vmax 82; 80 U/ml/min, respectively. Characterization revealed that enzyme was found to be acidophilic cellulase having optimal pH of 5.5 and 70 °C. Furthermore, cellulases were accelerated in the presence of Ca2+ and EDTA. The cellulases had activation energy (Ea) of -44.55; -50.02 kJ/mol for carboxy-methyl-cellulose hydrolysis and Enthalpy (ΔH) 42.20; 47.70 kJ/mol and entropy ΔS -5.1 and -5.7 kJ/mol for EG and BGL, respectively. In addition to this the enzyme had a secondary structure of protein as represented by FTIR spectrum The current study suggested that purified cellulases can be used as a detergent additive to improve washing. Furthermore, it shows the biostoning ability when applied on jean fabric.

15.
Future Med Chem ; 14(21): 1507-1526, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36268762

ABSTRACT

Background: To discover novel lead molecules against diabetes, Alzheimer's disease and oxidative stress, a library of arylated pyrazole-fused pyran derivatives, 1-20, were synthesized in a one-pot reaction. Materials & methods:1H-NMR spectroscopic and electron ionization mass spectrometry techniques were used to characterize the synthetic hybrid molecules 1-20. Analogs were screened against four indispensable therapeutic targets, including α-amylase, α-glucosidase, acetylcholinesterase and butyrylcholinesterase enzymes. Results: Except for derivatives 17 and 18, all other compounds exhibited varying degrees of inhibitory activities against target enzymes. The kinetic studies revealed that the synthetic molecules followed a competitive-type mode of inhibition for α-amylase and acetylcholinesterase enzymes, as well as a non-competitive mode of inhibition for α-glucosidase and butyrylcholinesterase enzymes. In addition, molecular docking studies identified crucial binding interactions of ligands with the enzyme's active site. Conclusion: These molecules may serve as a potential drug candidate to cure diabetes, Alzheimer's disease and oxidative stress in the future.


Subject(s)
Alzheimer Disease , Diabetes Mellitus , Humans , Butyrylcholinesterase/metabolism , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Molecular Docking Simulation , Cholinesterase Inhibitors/chemistry , alpha-Glucosidases/metabolism , Pyrans/therapeutic use , Kinetics , alpha-Amylases/metabolism , Pyrazoles/therapeutic use , Structure-Activity Relationship , Molecular Structure
16.
Int J Biol Macromol ; 221: 1294-1312, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36113601

ABSTRACT

A library of hydrazinyl thiazole-linked indenoquinoxaline hybrids 1-36 were synthesized via a multistep reaction scheme. All synthesized compounds were characterized by various spectroscopic techniques including EI-MS (electron ionization mass spectrometry) and 1H NMR (nuclear magnetic resonance spectroscopy). Compounds 1-36 were evaluated for their inhibitory potential against α-amylase, and α-glucosidase enzymes. Among thirty-six, compounds 2, 9, 10, 13, 15, 17, 21, 22, 31, and 36 showed excellent inhibition against α-amylase (IC50 = 0.3-76.6 µM) and α-glucosidase (IC50 = 1.1-92.2 µM). Results were compared to the standard acarbose (IC50 = 13.5 ± 0.2 µM). All compounds were also evaluated for their DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity and compounds 2, 9, 10, 17, 21, 31, and 36 showed (SC50 = 7.58-125.86 µM) as compared to the standard ascorbic acid (SC50 = 21.50 ± 0.18 µM). Among this library, compounds 9 and 10 with a hydroxy group on the phenyl rings and thiosemicarbazide bearing intermediate 21 were identified as the most potent inhibitors against α-amylase, and α-glucosidase enzymes. The remaining compounds were found to be moderately active. The molecular docking studies were conducted to understand the binding mode of active inhibitors and kinetic studies of the active compounds followed competitive modes of inhibition.


Subject(s)
Hyperglycemia , alpha-Glucosidases , Humans , alpha-Glucosidases/metabolism , alpha-Amylases/chemistry , Antioxidants/pharmacology , Antioxidants/metabolism , Molecular Docking Simulation , Thiazoles/chemistry , Kinetics , Oxidative Stress , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Structure-Activity Relationship
17.
Expert Opin Ther Pat ; 32(9): 969-1001, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35993146

ABSTRACT

INTRODUCTION: Oxadiazole is a unique class of heterocycle, possessing numerous important biomedical and therapeutic applications, such as anti-bacterial, anti-cancer, anti-inflammatory, inhibitors for diverse enzymes, receptor modulators, and neuroprotective properties. The rapid development in the field of oxadiazole-containing structures is confirmed by the development of numerous clinical drugs, such as doxazosin, nesapidil, pleconaril, fasiplon, ataluren, zibotentan, and prenoxdiazine as selected examples. AREAS COVERED: This review provides a comprehensive overview of the range of biological applications of oxadiazole-containing drugs in a range of patents from 2013 to 2021. The information was collected from available data sources including SciFinder, Reaxys, MedLine, and Chemical Abstracts. EXPERT OPINION: Oxadiazole is an established class of compounds with fascinating biological properties. The importance of oxadiazoles can be recognized by their enormous application in a wide spectrum of medicinal chemistry from anticancer, lantibiotics, and antidiabetics to their use in agriculture and neuroprotection. For instance, the oxadiazole-based compounds have shown the ability to modulate a variety of receptors including the M4 receptor agonists, S1P1 receptor modulators, SSTR5 antagonists, orexin type-2 receptor agonists, liver X receptor agonists, and many more. This testifies to the special features associated with the oxadiazole scaffold, making it a significant pharmacophore.


Subject(s)
Oxadiazoles , Patents as Topic , Anti-Inflammatory Agents/pharmacology , Chronic Disease , Humans , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Pharmaceutical Preparations
18.
Int J Biol Macromol ; 211: 653-668, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35568155

ABSTRACT

Variety of 2-aryl quinoxaline derivatives 1-23 were synthesized in good yields, by reacting 1,2-phenylenediamine with varyingly substituted phenacyl bromides in the presence of pyridine catalyst. All molecules 1-23 were characterized by spectroscopic techniques and evaluated for their diverse biological potential against α-amylase (α-AMY), α-glucosidase (α-GLU), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) enzymes. Synthetic derivatives possess enhanced inhibitory potential against all enzymes at nanomolar concentrations. In particular, compound 14 was found much superior with IC50 = 294.35, 198.21, 17.04, and 21.46 nM against α-AMY, α-GLU, AChE, and BChE, respectively, as compared to standard inhibitors. Furthermore, selected potent compounds, including 3, 4, 8, 14, 15, 17, and 18, were subjected to molecular docking studies to decipher the binding energies and interactions of ligands (synthetic molecules) with all four target enzymes.


Subject(s)
Acetylcholinesterase , Butyrylcholinesterase , Acetylcholinesterase/metabolism , Butyrylcholinesterase/chemistry , Cholinesterase Inhibitors/chemistry , Molecular Docking Simulation , Quinoxalines/pharmacology , Structure-Activity Relationship , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism
19.
Arch Pharm (Weinheim) ; 355(6): e2100481, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35355329

ABSTRACT

Diabetes mellitus is one of the most prevalent diseases nowadays. Several marketed drugs are available for the cure and treatment of diabetes, but there is still a dire need of introducing compatible drug molecules with lesser side effects. The current study is based on the synthesis of isatin thiazole derivatives 4-30 via the Hantzsch reaction. The synthetic compounds were characterized using different spectroscopic techniques and evaluated for their α-amylase and α-glucosidase inhibition potential. Of 27 isatin thiazoles, five (4, 5, 10, 12, and 16) displayed good activities against the α-amylase enzyme with IC50 values in the range of 22.22 ± 0.02-27.01 ± 0.06 µM, and for α-glucosidase, the IC50 values of these compounds were in the range of 20.76 ± 0.17-27.76 ± 0.17 µM, respectively. The binding interactions of the active molecules within the active site of enzymes were studied with the help of molecular docking studies. In addition, kinetic studies were carried out to examine the mechanism of action of the synthetic molecules as well. Compounds 3a, 4, 5, 10, 12, and 16 were also examined for their cytotoxic effect and were found to be noncytotoxic. Thus, several molecules were identified as good antihyperglycemic agents, which can be further modified to enhance inhibition ability and to find the lead molecule that can act as a potential antidiabetic agent.


Subject(s)
Hypoglycemic Agents , Isatin , Thiazoles , Diabetes Mellitus , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/pharmacology , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacology , Isatin/chemical synthesis , Isatin/pharmacology , Kinetics , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/pharmacology , alpha-Amylases/antagonists & inhibitors , alpha-Glucosidases/metabolism
20.
Molecules ; 27(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35209243

ABSTRACT

Dental caries, a global oral health concern, is a biofilm-mediated disease. Streptococcus mutans, the most prevalent oral microbiota, produces extracellular enzymes, including glycosyltransferases responsible for sucrose polymerization. In bacterial communities, the biofilm matrix confers resistance to host immune responses and antibiotics. Thus, in cases of chronic dental caries, inhibiting bacterial biofilm assembly should prevent demineralization of tooth enamel, thereby preventing tooth decay. A high throughput screening was performed in the present study to identify small molecule inhibitors of S. mutans glycosyltransferases. Multiple pharmacophore models were developed, validated with multiple datasets, and used for virtual screening against large chemical databases. Over 3000 drug-like hits were obtained that were analyzed to explore their binding mode. Finally, six compounds that showed good binding affinities were further analyzed for ADME (absorption, distribution, metabolism, and excretion) properties. The obtained in silico hits were evaluated for in vitro biofilm formation. The compounds displayed excellent antibiofilm activities with minimum inhibitory concentration (MIC) values of 15.26-250 µg/mL.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Models, Molecular , Streptococcus mutans/drug effects , Anti-Bacterial Agents/chemical synthesis , Humans , Microbial Sensitivity Tests , Molecular Conformation , Molecular Structure , Quantitative Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL