Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Open Vet J ; 14(1): 525-533, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633189

ABSTRACT

Background: 5-fluorouracil (5-FU) is an antimetabolic agent used for treating slowly growing solid tumors like breast and ovarian carcinoma. Thymoquinone (TQ) is the main biologically active constituent of Nigella sativa, it has been found to demonstrate anticancerous effects in several preclinical studies, and this is because TQ possesses multitarget nature. Stem cells-derived exosomes are in the spotlight of research and are promising tissue regenerative and anticancer cell-derived nanovesicles. Aim: Herein, we studied the antineoplastic effects of Exosomes derived from mammary stem cells (MaSCs-Exo) on breast cancer cells, alone or combined with TQ when compared to a breast cancer chemotherapeutic agent; 5-FU. Methods: Our approach included performing viability test and measuring the expression of pro-apoptotic gene (Bax), anti-apoptotic gene (BCL-2) and angiogenic gene (VEGF) on Human MCF-7 cells (breast adenocarcinoma cells), the MCF-7 cells were cultured and incubated with medium containing 5-FU (25 µg/ml), TQ (200 µg/ml), MaSCs-Exo (100 µg protein equivalent), a combination of TQ (200 µg/ml) and MaSCs-Exo (100 µg). Results: Our obtained results show that TQ and MaSCs-Exo each can effectively inhibit breast cancer cell line (MCF-7) proliferation and growth. Also, the results show that the combination of TQ and MaSCs-Exo had higher cytotoxic effects on MCF-7 breast cancer cells than TQ or 5-FU, alone. Conclusion: The present study shows a promising anticancer potential of exosomes isolated from mammary stem cells; this effect was potentiated by adding TQ with MaSCs-derived exosomes.


Subject(s)
Antineoplastic Agents , Benzoquinones , Breast Neoplasms , Exosomes , Humans , Animals , Female , Breast Neoplasms/veterinary , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Apoptosis , Exosomes/metabolism , Exosomes/pathology , Cell Line, Tumor , Stem Cells/metabolism , Stem Cells/pathology
2.
Equine Vet J ; 55(3): 487-493, 2023 May.
Article in English | MEDLINE | ID: mdl-35665534

ABSTRACT

BACKGROUND: Lavender foal syndrome (LFS) is a fatal hereditary condition that is inherited in an autosomal recessive pattern. This detrimental mutation is more common in Arabian foals of Egyptian origin than foals from other bloodlines. Heterozygous horses are carriers of the LFS trait and appear normal, while recessive homozygous foals died shortly after birth due to serious complications. In Egypt, in 2014, an Egyptian foal died after manifestations of neurological signs and abnormal coat colour as LFS signs. Therefore, it is important to identify LFS carriers in the population of Arabian horses in Egypt and to encourage improvement of the Arabian horse industry in Egypt by constructing a breeding system based on genetic background in order to avoid mating between carriers and reduce financial losses from deaths of affected foals. OBJECTIVES: To establish a PCR-based test for detecting the MYO5A gene mutation causing LFS in the registered Arabian horse population in Egypt prior to breeding. STUDY DESIGN: Cross sectional survey (n = 170) plus targeted sampling (n = 30). METHODS: A total of 200 samples were collected from an Arabian farm in Egypt and some of them were traced for LFS based on the farm records. The LFS genotypes were identified using the PCR-RFLP technique, fragment analysis followed by sequence analysis. RESULTS: The overall mutated allele and genotype frequencies (N/L) were 0.08 and 16%, respectively. CONCLUSION: The observed frequency of heterozygotes suggests foals affected with LFS will be produced among Arabian horses in Egypt. Therefore, screening of the entire population for this mutation should be undertaken in the breeding program.


Subject(s)
Horse Diseases , Animals , Cross-Sectional Studies , Egypt/epidemiology , Genotype , Horse Diseases/epidemiology , Horse Diseases/genetics , Horses , Myosin Type V/genetics , Syndrome , Mutation
3.
Front Microbiol ; 13: 1049037, 2022.
Article in English | MEDLINE | ID: mdl-36483200

ABSTRACT

Introduction: The control of Newcastle disease virus (NDV) infection depends solely on vaccination which in most cases is not sufficient to restrain the consequences of such a highly evolving viral disease. Finding out substances for preparing an efficient anti-ND drug would be of high value. n-Docosanol is a saturated fatty alcohol with an inhibitory effect against many enveloped viruses. In this study, we evaluated the therapeutic effect of n-docosanol on NDV infection and shedding in chickens. Methods: Chickens infected with a highly virulent NDV were treated with low to high concentrations of n-docosanol (20, 40, and 60 mg/kg body weight) for 4-successive days, once they showed the disease symptoms. Survival and curative rates, virus load, histopathological scoring, and virus shedding were defined. Results: Symptoms development was found to discontinue 24-72 hours post-treatment. Survival rate in the NDV-infected chickens raised 37.4-53.2% after the treatment. n-Docosanol treatment was also found to significantly reduce virus load in the digestive (26.2-33.9%), respiratory (38.3-63%), nervous (26.7-51.1%), and lymphatic (16.4-29.1%) tissues. Histopathological scoring of NDV lesions revealed prominent rescue effects on the histology of different tissues. Importantly, n-docosanol treatment significantly reduced virus shedding in oropharyngeal discharge and feces thereby allowing the restriction of NDV spread. Conclusion: Our findings suggest n-docosanol as a promising remedy in the control strategy of Newcastle disease in the poultry industry.

4.
Pharmaceutics ; 14(6)2022 May 31.
Article in English | MEDLINE | ID: mdl-35745756

ABSTRACT

Gut modulation by multi-strain probiotics (MSPs) is considered an effective strategy for treating inflammatory bowel disease (IBD). The combination of nanomaterial-based MSPs can improve their viability and resistance and can allow their targeted release in the gastrointestinal tract to be achieved. Thus, our aim is to investigate the prospective role of MSP integration into nanomaterials (MSPNPs) and the underlying molecular mechanisms supporting their application as an alternative therapy for IBD using a colitis rat model. To induce the colitis model, rats received 5% DSS, and the efficacy of disease progression after oral administration of MSPNPs was assessed by evaluating the severity of clinical signs, inflammatory response, expressions of tight-junction-related genes and NLRP3 inflammasome and caspase-1 genes, microbial composition and histopathological examination of colonic tissues. The oral administration of MSPNPs successfully alleviated the colonic damage induced by DSS as proved by the reduced severity of clinical signs and fecal calprotectin levels. Compared with the untreated DSS-induced control group, the high activities of colonic NO and MPO and serum CRP levels were prominently reduced in rats treated with MSPNPs. Of note, colonic inflammation in the group treated with MSPNPs was ameliorated by downstreaming NLRP3 inflammasome, caspase-1, IL-18 and IL-1ß expressions. After colitis onset, treatment with MSPNPs was more effective than that with free MSPs in restoring the expressions of tight-junction-related genes (upregulation of occludin, ZO-1, JAM, MUC and FABP-2) and beneficial gut microbiota. Interestingly, treatment with MSPNPs accelerated the healing of intestinal epithelium as detected in histopathological findings. In conclusion, the incorporation of MPSs into nanomaterials is recommended as a perspective strategy to overcome the challenges they face and augment their therapeutic role for treating of colitis.

5.
Biomolecules ; 12(5)2022 05 02.
Article in English | MEDLINE | ID: mdl-35625591

ABSTRACT

The rate of chronic kidney disease (CKD) is increasing globally, and it is caused by continuous damage to kidney tissue. With time the renal damage becomes irreversible, leading to CKD development. In females, post-menopause lack of estrogen supply has been described as a risk factor for CKD development, and studies targeting post-menopause CKD are scarce. In the present study, we used exosomes isolated from bone marrow mesenchymal stem/stromal cells (BM-MSCs) to test their therapeutic potential against the development of CKD. At first, the menopause model was achieved by surgical bilateral ovariectomy in female albino rats. After that, 100 µg of exosomes was given to ovariectomized rats, and the study continued for 2 months. Changes in urine volume, urine protein content, kidney function biochemical parameters (creatinine and BUN), kidney antioxidant parameters (SOD, GPx and CAT), histological changes, immunohistochemical levels of caspase 3, and the gene expression of NGAL (related to kidney damage), TGFß1 and αSMA (related to fibrosis and EMT), and caspase 3 (related to apoptosis) were studied. After the ovariectomy, the occurrence of CKD was confirmed in the rats by the drastic reduction of serum estrogen and progesterone levels, reduced urine output, increased urinary protein excretion, elevated serum creatinine and BUN, reduced GPx SOD, and CAT in kidney tissue, degenerative and fibrotic lesions in the histopathological examination, higher immunohistochemical expression of caspase 3 and increased expression of all studied genes. After exosomes administration, the entire chronic inflammatory picture in the kidney was corrected, and a near-normal kidney structure and function were attained. This study shows for the first time that BM-MSCs exosomes are potent for reducing apoptosis and fibrosis levels and, thus, can reduce the chronic damage of the kidneys in females that are in their menopause period. Therefore, MSCs-derived exosomes should be considered a valuable therapy for preserving postmenopausal kidney structure and function and, subsequently, could improve the quality of females' life during menopause.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Renal Insufficiency, Chronic , Animals , Apoptosis , Caspase 3/metabolism , Estrogens/metabolism , Exosomes/metabolism , Female , Fibrosis , Kidney/pathology , Postmenopause , Rats , Renal Insufficiency, Chronic/metabolism , Superoxide Dismutase/metabolism
6.
Sci Rep ; 12(1): 5116, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35332200

ABSTRACT

Promising therapy is needed for treating inflammatory bowel diseases (IBD) to overcome current treatment that inefficient and associated with unnecessary health risks. Recently, the concept of incorporating natural products into nanocarriers has been intended as a promising therapy for treating IBD via modulating their stability and bioavailability. Thus, we aimed to explore the potential alleviating effects of dietary nano-supplement combined with bacillus strains (Bacillus amyloliquefaciens; BANPs) in colitis model. Rats were orally gavaged by 5% DSS and the efficacy and mechanistic actions of BANPs were evaluated by assessing the severity of clinical signs and inflammatory and apoptosis response, histopathological and immunohistochemistry examination in colonic tissues. The severity of clinical signs was successfully alleviated and fecal Lcn-2 levels, an important colitic marker, were decreased in BANPs then free BA treated groups. In contrast, inflammatory markers overexpression IL-6, IL-1ß, TNFα, COX-2, and iNOS in the colitic group were reduced more prominently in BANPs treated group, unlike free BA. The amelioration of BANPs to colon injury was also correlated with oxidative stress suppression along with restoring total antioxidant capacity. Interestingly, BANPs treatment modulated apoptotic markers as proved by downregulation of cytochrome c, and caspase-3 and upregulation of Bcl-2 and Bax than free BA. The severity of the histopathological alterations in the colon was greatly reduced in BANPs than free BA groups. Remarkably, over-expression of ki67 and IL-6 in colonic tissues were suppressed in BANPs group. These findings together highlighted the beneficial efficacy of BANPs in IBD treatment which are evidenced by colonic inflammation alleviation. Taken together, these results recommend that BANPs is a promising agent that encourages its possible therapeutic role in colitis treatment.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Nanoparticles , Probiotics , Animals , Apoptosis , Colitis/chemically induced , Colitis/drug therapy , Colon/pathology , Dextran Sulfate/toxicity , Disease Models, Animal , Inflammation/pathology , Inflammatory Bowel Diseases/pathology , Interleukin-6/metabolism , Oxidative Stress , Probiotics/pharmacology , Probiotics/therapeutic use , Rats
7.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35337154

ABSTRACT

Salmonella enterica serovar Typhimurium (S. typhimurium) is known for its intracellular survival, evading the robust inflammation and adaptive immune response of the host. The emergence of decreased ciprofloxacin (CIP) susceptibility (DCS) requires a prolonged antibiotic course with increased dosage, leading to threatening, adverse effects. Moreover, antibiotic-resistant bacteria can persist in biofilms, causing serious diseases. Hence, we validated the in vitro and in vivo efficacy of ciprofloxacin-loaded mesoporous silica nanoparticles (CIP-MSN) using a rat model of salmonella infection to compare the oral efficacy of 5 mg/kg body weight CIP-MSN and a traditional treatment regimen with 10 mg/kg CIP postinfection. Our results revealed that mesoporous silica particles can regulate the release rate of CIP with an MIC of 0.03125 mg/L against DCS S. typhimurium with a greater than 50% reduction of biofilm formation without significantly affecting the viable cells residing within the biofilm, and a sub-inhibitory concentration of CIP-MSN significantly reduced invA and FimA gene expressions. Furthermore, oral supplementation of CIP-MSN had an insignificant effect on all blood parameter values as well as on liver and kidney function parameters. MPO and NO activities that are key mediators of oxidative stress were abolished by CIP-MSN supplementation. Additionally, CIP-MSN supplementation has a promising role in attenuating the elevated secretion of pro-inflammatory cytokines and chemokines in serum from S. typhimurium-infected rats with a reduction in pro-apoptotic gene expression, resulting in reduced S. typhimurium-induced hepatic apoptosis. This counteracted the negative effects of the S. typhimurium challenge, as seen in a corrected histopathological picture of both the intestine and liver, along with increased bacterial clearance. We concluded that, compared with a normal ciprofloxacin treatment regime, MSN particles loaded with a half-dose of ciprofloxacin exhibited controlled release of the antibiotic, which can prolong the antibacterial effect.

8.
Free Radic Biol Med ; 182: 150-159, 2022 03.
Article in English | MEDLINE | ID: mdl-35218913

ABSTRACT

Chronic kidney disease (CKD) is an important global disease its rates are increasing worldwide. CKD is caused by injuries to kidney tissue that exceeds the rate of regeneration, which with time lead to irreversible renal damage and CKD become evident. In females, diminished estrogen supply in the postmenopausal period is associated with greater risk for developing CKD. In this study we isolated exosomes from bone marrow mesenchymal stem/stromal cells (BM-MSCs) and tested their therapeutic effects on post-menopause CKD (PM-CKD) and compared their effects with BM-MSCs. The menopause model was achieved by bilateral ovariectomy in 8-months-old female albino rats, then no treatment, 2 million BM-MSCs or 100 µg of exosomes (Exo) was given intravenously in tail vein to ovariectomized rats and the study continued for 8 weeks post-ovariectomy. Changes in weight, urine volume, urine protein content, kidney function biochemical parameters (creatinine and BUN), Kidney oxidative stress (MDA), kidney antioxidant parameters (SOD, GPx and CAT), histopathological changes, immunohistochemical expression of KIM-1 and, finally, genes related to renal damage (peroxiredoxin-3, KIM-1 and ICAM-1) and inflammation (TNF-α, Cox2 and IL-6) were recorded for all study groups. Post-ovariectomy there was an increased body weight, drastic reduction of estrogen and progesterone levels, reduced urine output, increased urinary protein excretion, elevated serum creatinine and BUN, increased MDA and reduced GPx SOD, and CAT in kidney tissue, chronic inflammation, degenerative and fibrotic lesions in histopathological examination, high expression of KIM-1 immunohistochemically and changes in gene expression analyses all pointing to the development of CKD in the study rats. In the PM-CKD groups receiving BM-MSCs or Exo, the whole chronic inflammatory picture was completely reversed towards a much normal kidney structure and function. The improvements were more observable with Exo compared to BM-MSCs. Overall, our results show for the first time that exosomes isolated from BM-MSCs are more potent in reducing chronic inflammatory changes in the kidney of postmenopausal females compared to the cell-based approach using BM-MSCs. Therefore, MSCs-derived exosomes are a promising therapeutic approach for preserving postmenopausal kidney structure and function and, subsequently, should improve the quality of life of postmenopausal females.


Subject(s)
Exosomes , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Exosomes/metabolism , Female , Inflammation/metabolism , Kidney/pathology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Postmenopause , Quality of Life , Rats
9.
Anim Biotechnol ; 33(4): 599-611, 2022 Aug.
Article in English | MEDLINE | ID: mdl-32865111

ABSTRACT

This study aimed to screen intron 8 of the leptin receptor (LEPR) gene for polymorphisms in female Japanese quails. Two adjacent novel SNPs (A277G and A304G) were detected using PCR-SSCP and sequencing. These SNPs produced three haplotypes (AA/AA, AG/AG, and GG/GG) that were significantly (p ≤ 0.05) associated with growth and egg production traits. GG/GG haplotype-quails had significantly (p ≤ 0.05) lower egg production, feed intake, growth performance, lipid profile, serum levels of sex hormones (estradiol, progesterone, FSH, LH), and ovarian expressions of survivin, FSHR, and IGF1 than other quails. However, GG/GG quails had significantly (p ≤ 0.05) higher serum levels of LEP and mRNA levels of LEPR, LEP, and caspase 3 in the hypothalamus and ovaries. These higher levels of LEP/LEPR could not only reduce feed intake and body weight gain but also could induce apoptosis of ovarian cells (as indicated by lower survivin and IGF1 and higher caspase3 expression) which could inhibit the development of the follicles and the release of sex hormones with a subsequent decrease in egg production in GG/GG quails. Therefore, with these results, we suggest selecting Japanese quails with AA/AA and AG/AG haplotypes to improve the reproduction and growth performance of this flock.


Subject(s)
Coturnix , Polymorphism, Single Nucleotide , Animals , Coturnix/genetics , Female , Gene Frequency , Haplotypes/genetics , Leptin/genetics , Polymorphism, Single Nucleotide/genetics , Survivin/genetics
10.
Aquat Toxicol ; 242: 106054, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34923218

ABSTRACT

Contamination of aquatic systems with heavy metals (HM) is of great concern owing to their deleterious impact on living organism. The current research is focused on application of silica particles with new functionalized properties (magnetic silica; SiMag or Nanoporous silica; SiNPs) and their efficacy to mitigate lead (pb) toxicity in Nile tilapia. One thousand fingerlings were distributed: two control groups (negative; without pb toxicity (NC) positive (with pb toxicity) and other four groups received two silica sources (SiMag or SiNPs) with two levels (400 and 600 mg/kg diet) for 56 days then exposed to pb for 30 days. Before toxicity exposure, maximum growth, and most improved feed conversion ratio and biochemical parameters were noticed with higher SiMag or SiNPs levels. Serum antioxidant enzymes and their transcriptional levels in muscle and liver were boosted in groups received SiMag or SiNPs. After toxicity exposure, hematological and antioxidants biomarkers maintained at adequate levels in SiMag or SiNPs. Prominent reduction of residual pb in gills, liver, kidney, and muscle was observed in SiNPs then SiMag groups. Interestingly, the maximum down-regulation of P450, caspase-3 and HSP-70 and MT were observed in groups received 600 mg/kg diet of SiMag or SiNPs. The higher level of P53 in liver and gills was detected in PC, inversely reduced in SiMag or SiNPs. Severity of the histopathological alterations in examined organs greatly reduced in groups received SiMag or SiNPs, unlike it were induced in PC group. In conclusion, higher SiMag or SiNPs levels not only mitigate negatives impact of pb toxicity in fish but also ensure its safety for human consumption.


Subject(s)
Cichlids , Lead , Nanoparticles , Silicon Dioxide , Water Pollutants, Chemical , Animals , Antioxidants/metabolism , Apoptosis , Bioaccumulation , Cichlids/metabolism , Lead/toxicity , Water Pollutants, Chemical/toxicity
11.
Animals (Basel) ; 11(5)2021 Apr 25.
Article in English | MEDLINE | ID: mdl-33923003

ABSTRACT

Prolactin (PRL) and its receptor (PRLR) were considered as potential genetic markers for milk production and quality traits in cattle. However, little information is available regarding PRLR genetic diversity and association studies with milk traits in Egyptian water buffaloes. Therefore, the present study was conducted to search for mutations in PRLR and determine their associations with milk performance in these animals. Exon3 (E3) and E10 of PRLR were screened for polymorphisms using single strand conformation polymorphism (SSCP) and sequencing in 400 buffaloes. The associations between haplotypes and milk production (fat%, protein%, lactose%, and solid%) traits as well as mRNA and protein levels of PRL and PRLR were studied. Two single nucleotide polymorphisms (SNPs) in E10 were detected: g.11685G>A (p.Ala494Thr) and g.11773T>C (p.Val523Aal). The G and T alleles were wild (ancestral) alleles, while the A and C alleles were mutant alleles. These SNPs resulted in four haplotypes; AC, AT, GC, and GT. Buffaloes with wild GT haplotypes showed significantly higher milk yield, fat% and protein%, mRNA and protein levels of PRL and PRLR in milk somatic cells than other animals. Animals carrying mutant AC haplotype had inferior milk traits and lowest levels of associated mRNAs and proteins. With these results, we could conclude that the selection of buffaloes with wild GT haplotypes for g.11685G>A and g.11773T>C SNPs of the PRLR gene might improve the milk production traits of Egyptian water buffaloes.

12.
Animals (Basel) ; 10(10)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096600

ABSTRACT

Bovine papillomatosis is a viral disease of cattle causing cutaneous warts. A diagnosis of this viral infection is very mandatory for combating the resulting economic losses. Given the limited data available about bovine papillomavirus (BPV) in Egypt, the present study involved the molecular diagnosis of bovine papillomavirus type-1 (BPV-1), -2, -4, -5, and -10 in cattle presenting cutaneous warts on the head and neck from New Valley Province, Egypt. The phylogenetic analysis of the detected types of BPV was also performed, followed by developing a point-of-need molecular assay for the rapid identification of identified BPV types. In this regard, a total of 308 cattle from private farms in Egypt were clinically examined, of which 13 animals presented cutaneous warts due to suspected BPV infection. The symptomatic animals were treated surgically, and biopsies from skin lesions were collected for BPV-1, -2, -4, -5, and -10 molecular identification using polymerase chain reaction (PCR). The presence of BPV-1 DNA was confirmed in 11 collected samples (84.6%), while BPV-2, -4, -5, and -10 were not detected. Sequencing of the PCR products suggested the Egyptian virus is closely related to BPV found in India. An isothermal nucleic acid amplification test (NAAT) with labeled primers specific for the BPV-1 L1 gene sequence, and based on recombinase polymerase amplification (RPA), in combination with a lateral flow strip assay for the detection of RPA products, was developed and tested. The point-of-need molecular assay demonstrated a diagnostic utility comparable to PCR-based testing. Taken together, the present study provides interesting molecular data related to the occurrence of BPV-1 in Egypt and reveals the genetic relatedness of the Egyptian BPV-1 with BPV-1 found in buffalo in India. In addition, a simple, low-cost combined test was also validated for diagnosis of the infection. The present study suggests the necessity of future investigations about the circulating strains of the virus among the cattle in Egypt to assess their genetic relatedness and better understand the epidemiological pattern of the disease.

13.
Biology (Basel) ; 9(9)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32878059

ABSTRACT

Avipoxviruses (APVs) are among the most complex viruses that infect a wide range of birds' species. The infection by APVs is often associated with breathing and swallowing difficulties, reduced growth, decreased egg production, and high mortalities in domestic poultry. In the present study, 200 cutaneous nodular samples were collected from different avian species (chicken, pigeon, turkey, and canary) suspected to be infected with APVs from Dakahlia Governorate, Egypt. Pooled samples (n = 40) were prepared and inoculated in embryonated chicken eggs (ECEs). APVs were then identified by polymerase chain reaction (PCR) and sequence analysis of the APV P4b gene. Furthermore, the forty strains of APVs were screened for the presence of reticuloendotheliosis virus (REV)-5'LTR in their genomes. Interestingly, the phylogenic tree of the APV P4b gene was separated into 2 clades: clade 1, in which our fowlpox virus (FWPV), turkeypox virus (TKPV), and canarypox virus (CNPV) isolates were grouped, along with reference FWPVs and TKPVs retrieved from GenBank, whereas, in clade2, the pigeonpox virus (PGPV) isolate was grouped with PGPVs retrieved from GenBank. Likewise, REV-5'LTR was amplified from 30 strains isolated from chicken, turkey, and canary, while PGPV strains were free from REV-5'LTR integration. To the best of our knowledge, this study involved the detection and characterization of REV-5'LTR insertions in the APVs field isolates in Egypt for the first time. Given the above information, further future research seems recommended to understand the impact of the resulting REV-5'LTR insertions on the pathogenesis, virulence, and inadequate vaccine protection against APVs.

14.
Animals (Basel) ; 10(7)2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32679878

ABSTRACT

For its role in the mediation of growth hormone (GH) galactopoietic effect, growth hormone receptor (GHR) was considered a functional candidate gene for milk performance in cattle. However, its genetic variation and potential effect have not been investigated in Egyptian buffaloes. This study aimed to screen GHR for polymorphisms and study their associations with milk traits in Egyptian buffaloes. Polymerase chain reaction, single-strand conformation polymorphism, and sequencing were used to identify mutations in 4 exons (E4-E6 and E8) of the GHR gene in 400 Egyptian buffaloes. No polymorphisms were found in E4, while 2 SNPs (c.380G>A/p.Arg127Lys and c.387C>T/p.Gly129) in E5, one silent mutation (c.435A>G/p.Pro145) in E6, and another missense mutation (c.836T>A/p.Phe279Tyr) in E8 were detected. The c.380G>A SNP in the extracellular domain was associated with milk yield, fat %, protein %, and 305-day milk, fat and protein yield, with higher levels in animals carrying the mutant A allele. The c.836T>A SNP in the transmembrane domain was associated with milk yield, fat %, protein %, and 305-day milk, fat and protein yield, with higher milk yield and lower fat %, protein %, fat and protein yield in the mutant A allele-animals. Interestingly, animals with the two mutant AA alleles produced higher milk yield, fat %, protein %, fat and protein yield, accompanied with upregulated expressions of GHR, GH, insulin-like growth factor 1 (IGF1), prolactin (PRL), prolactin receptor (PRLR), ß-casein (encoded by CSN2 gene), and diacylglycerol acyltransferase-1 (DGAT1) genes and proteins in milk somatic cells. Therefore, selection of Egyptian buffaloes with mutant AA haplotypes for the novel c.380G>A SNP and the well-known c.836T>A SNP could improve milk yield and quality in buffaloes.

15.
Genesis ; 57(11-12): e23339, 2019 11.
Article in English | MEDLINE | ID: mdl-31724301

ABSTRACT

This study was conducted to check whether the three chick Early B-cell Factor (Ebf) genes, particularly cEbf1, would be targets for Shh and Bmp signals during somites mediolateral (ML) patterning. Tissue manipulations and gain and loss of function experiments for Shh and Bmp4 were performed and the results revealed that cEbf1 expression was initiated in the cranial presomitic mesoderm by low dose of Bmp4 from the lateral mesoderm and maintained in the ventromedial part of the epithelial somite and the medial sclerotome by Shh from the notochord; while cEbf2/3 expression was induced and maintained by Bmp4 and inhibited by high dose of Shh. To determine whether Ebf1 plays a role in somite patterning, transfection of a dominant-negative construct was carried out; this showed suppression of cPax1 expression in the medial sclerotome and upregulation and medial expansion of cEbf3 and cPax3 expression in sclerotome and dermomyotome, respectively, suggesting that Ebf1 is important for ML patterning. Thus, it is possible that low doses of Bmp4 set up Ebf1 expression which, together with Shh from the notochord, leads to establishment of the medial sclerotome and suppression of lateral identities. These data also conclude that Bmp4 is required in both the medial and lateral domain of the somitic mesoderm to keep the ML identity of the sclerotome through maintenance of cEbf gene expression. These striking findings are novel and give a new insight on the role of Bmp4 on mediolateral patterning of somites.


Subject(s)
Body Patterning/genetics , Trans-Activators/genetics , Animals , Bone Morphogenetic Protein 4/metabolism , Chick Embryo , Chickens/metabolism , Gene Expression Regulation, Developmental/genetics , Hedgehog Proteins/genetics , Mesoderm/metabolism , Notochord/metabolism , Somites/metabolism , Transcription Factors/genetics
16.
Theriogenology ; 126: 230-238, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30590244

ABSTRACT

Expression of myostatin (MSTN, also known as growth differentiation factor 8, GDF8) was recently detected in cumulus-oocytes complexes (COCs), however little is known about its role in in vitro maturation (IVM) and fertilization (IVF) in large animals. Therefore, this study was designed to investigate the effect of MSTN inhibition on IVM of buffalo oocytes through investigation of IVM efficiency and expression of some specific genes in COCs from IVM till subsequent developmental stages following IVF. To reach this goal, we prepared a construct of adeno-associated virus (AAV) carrying MSTN pro-peptides (AAV-MSTNP) to inhibit MSTN. Over-expression of MSTNP was verified by upregulated expression of MSTNP and downregulated expression of the TGFß receptor ActRIIb, the TGFß signal transducer SMAD2 in COCs using qPCR. Microinjection of AAV-MSTNP to oocytes before IVM yielded a significant decrease in maturation rate as revealed by less cumulus cells expansion, fewer oocytes reaching metaphase II, and downregulation of cumulus expansion-related genes pentraxin 3 (Ptx3) and prostaglandin-endoperoxide synthase 2 (Ptgs2) as compared to the control and vehicle groups. These changes were also accompanied by elevated intracellular reactive oxygen species (ROS), upregulated expression of the apoptotic Bax gene, reduced antioxidant enzymes (SOD, CAT, GPX) activities, and downregulated expression of the antioxidant gene nuclear factor erythroid 2 like 2 (Nrf2), and the anti-apoptotic gene Bcl2 in COCs after IVM. Overexpression of MSTN inhibitor, MSTNP, also inhibited GDF9 and BMP15 genes expression in COCs. Additionally, both the fertilization efficiency and cleavage and blastocyst rates were significantly lower in MSTNP group than in the control and vehicle groups. The obtained data suggest an important role for MSTN during IVM and the subsequent developmental stages probably through, at least in part, inhibition of ROS production and apoptosis and modulation of IVM-related gene expression in COCs.


Subject(s)
Buffaloes/embryology , In Vitro Oocyte Maturation Techniques/veterinary , Myostatin/physiology , Oocytes/growth & development , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Cumulus Cells/cytology , Cumulus Cells/drug effects , Fertilization in Vitro/veterinary , Gene Expression Regulation, Developmental , Microinjections , Myostatin/antagonists & inhibitors , Oocytes/drug effects , Oocytes/metabolism , Reactive Oxygen Species/metabolism
17.
Stem Cells Int ; 2018: 8058979, 2018.
Article in English | MEDLINE | ID: mdl-30224923

ABSTRACT

Cross talk, mediated by exosomes, between normal stem cells and cancer stem cells (CSCs) in the tumor microenvironment has been given less attention so far. In addition, no publications are available in the literature that address the in vivo impact of exosomes derived from CSCs and mesenchymal stem cells (MSCs) on progression of long-term hepatocellular carcinoma (HCC). Herein, we hypothesized that transfer of exosomes among the cells in the HCC microenvironment could either induce or inhibit tumor growth and metastasis depending on their source. To check this hypothesis, we investigated the effect of exosomes coming from two different stem cell populations, hepatic CSCs and bone marrow (BM) MSCs, on progression of long-term DEN-induced HCC in rats and the involved underlying mechanisms. CSCs-exosomes induced a significant increase in liver relative weight and serum levels of cancer markers (AFP and GGT) and liver enzymes (ALT, AST, and ALP), intensive immunostaining for the HCC marker GST-P, and an increased number and area of tumor nodules as compared to HCC rats injected by PBS. CSCs-exosomes also decreased apoptosis (marked by downregulation of Bax and p53 and upregulation of Bcl2, and increased immunostaining of PCNA), increased angiogenetic activity (revealed by upregulation of VEGF), enhanced metastasis and invasiveness (indicated by upregulation of P13K and ERK proteins and their downstream target MMP9 and downregulation of TIMP1), and induced epithelial mesenchymal transition (marked by increased serum and hepatic level of TGFß1 mRNA and protein). Notably, CSCs-exosomes also elevated HCC exosomal microRNA (miR) 21, exosomal long noncoding (lnc) RNA Tuc339, lncHEIH, and the HCC lncHOTAIR and decreased liver miR122 and HCC miRs (miR148a, miR16, and miR125b). All these cellular, functional, and molecular changes were reversed following injection of BM-MSCs-exosomes. However, both CSCs- and MSCs-exosomes failed to change the elevated oxidative stress or the inhibited antioxidant activities induced by HCC. Collectively, our results revealed a tumor stimulatory effect (induction of tumor growth, progression, and metastasis) for exosomes derived from CSCs and an inhibitory effect for exosomes derived from MSCs. These results provide valuable insight on the effect of CSCs- and MSCs-exosomes on HCC growth and progression in vivo, which may be helpful to understand the mechanism of HCC development.

18.
Vector Borne Zoonotic Dis ; 18(8): 424-432, 2018 08.
Article in English | MEDLINE | ID: mdl-29893619

ABSTRACT

Cryptosporidiosis is a parasitic zoonosis implicated in severe diarrhoea in pets and humans. This study aimed to determine the prevalence and genotypes of Cryptosporidium spp. in household dogs and in-contact children, and the risk factors associated with infection in children in Sharkia Province, Egypt. Fecal samples of 100 children (2-12 years old) and 50 dogs (3 months-1 year old) were randomly collected from both rural (children: n = 85, dogs: n = 40) and urban (children: n = 15, dogs: n = 10) households. Initial parasite detection was done by light microscopy, while, genotyping was based on molecular diagnostic assays. The overall prevalence of Cryptosporidium spp. infection in children was 35% using microscopy and 14% using nested polymerase chain reaction (PCR). In dogs, it was 34% using microscopy and 24% using nested PCR. Cryptosporidium spp. from children were identified as distinct genotypes, with the predominance of human genotype I (Cryptosporidium hominis) over the zoonotic genotype II (Cryptosporidium parvum). Moreover, only zoonotic genotype II (C. parvum) was identified in dog samples. The significant risk factors associated with the prevalence of Cryptosporidium infection in children were the presence of diarrheal episodes during time of survey, improper disposal of garbage, and dog feces and contact with other livestock (p ≤ 0.05). This study concluded that the existence of C. parvum in children and dogs residing the same households confirm the zoonotic transmission and its public health significance. Also, the study recommended the necessity of hygienic disposal of dog feces and preventing direct contact of dogs with other livestock.


Subject(s)
Cryptosporidiosis/parasitology , Cryptosporidium/genetics , Dog Diseases/parasitology , Genotype , Zoonoses , Animals , Child , Child, Preschool , Cryptosporidiosis/epidemiology , Cryptosporidium/classification , Dog Diseases/epidemiology , Dogs , Egypt/epidemiology , Female , Humans , Male , Risk Factors , Rural Population , Urban Population
19.
J Parasit Dis ; 42(2): 277-286, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29844633

ABSTRACT

Some reports have shown that mesenchymal stem cells (MSCs) therapy could ameliorate chemically-induced hepatic fibrosis. This research assesses the therapeutic action of bone marrow mesenchymal stem cells (BM-MSCs) on chronic diseased liver in Schistosoma mansoni infected mice. All infected female mice divided into three groups, one group (15 mice) treated with oral praziquantel (PZQ), second group (15 mice) received intravenous injection of BM-MSCs and third group (15 mice) treated with both MSCs + PZQ. Two control groups (15 mice each) subdivided into one infected and second healthy one. BM-MSCs were obtained from bones of both femur and tibia of male mice (30 mice), then cultured and characterized morphologically by detection of CD105 by flow cytometer. Liver tissues for all groups were examined histopathologically. Measuring of the collagen 1 gene expression was done by real-time PCR and immunohistochemical study to detect stem cells differentiation for detection of MSCs engraftments in liver tissue. MSCs treatment caused marked improvement and regression of fibrosis, and prevents deposition of collagen and reduced the expression of collagen 1 gene in infected mice on their liver tissues, especially when used with PZQ in mice treatment. It can be concluded that, MSCs is a good therapeutic method for liver fibrosis caused by S. mansoni infection.

20.
Reprod Fertil Dev ; 30(3): 487-497, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28814372

ABSTRACT

Cytochrome P450 aromatase (encoded by the CYP19A1 gene) regulates oestrogen biosynthesis and so plays an essential role in female fertility. We investigated the genetic association of CYP19A1 with the risk of anoestrus in Egyptian water buffaloes. A total of 651 animals (326 anoestrous and 325 cycling) were used in this case-control study. Using single-strand conformation polymorphisms and sequencing, four single nucleotide polymorphisms (SNPs) were detected; c.-135T>C SNP in the 5'UTR and three non-synonymous SNPs: c.559G>A (p. V187M) in Exon 5, c.1285C>T (p. P429S) and c.1394A>G (p. D465G) in Exon 10. Individual SNP-anoestrus association analyses revealed that genotypes (CC, AA and GG) and alleles (C, A and G) of the -135T>C, c.559G>A and c.1394A>G SNPs respectively were high risk for anoestrus. A further analysis confirmed that these three SNPs were in linkage disequilibrium. Additionally, haplotypes with two (TAG/122 and CAA/221) or three (CAG/222) risk alleles were significantly associated with susceptibility to anoestrus, lower blood levels of both oestradiol and antioxidant enzymes (superoxide dismutase, glutathione peroxidase (GPX) and catalase) and downregulated expression levels of CYP19A1, oestrogen receptor α and Gpx3 in the ovary, as well as increased serum level of malondialdehyde. This suggests the occurrence of a high incidence of oxidative ovarian damage and subsequently ovarian inactivity in buffaloes carrying risk alleles. Therefore, with this study we suggest the selection of buffaloes with protective alleles at these SNPs to improve the reproductive efficiency of the herd.


Subject(s)
Anestrus/genetics , Aromatase/genetics , Buffaloes/genetics , Ovary/enzymology , Polymorphism, Single Nucleotide , 5' Untranslated Regions , Anestrus/blood , Animals , Biomarkers/blood , Buffaloes/blood , Catalase/blood , Estradiol/blood , Estrogen Receptor alpha/metabolism , Exons , Female , Gene Frequency , Glutathione Peroxidase/blood , Haplotypes , Heterozygote , Homozygote , Linkage Disequilibrium , Malondialdehyde/blood , Oxidative Stress , Phenotype , Superoxide Dismutase/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...