Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38541539

ABSTRACT

The surface-enhanced Raman scattering (SERS) properties of low-dimensional semiconducting MXene nanoflakes have been investigated over the last decade. Despite this fact, the relationship between the surface characteristics and SERSing performance of a MXene layer has yet to be comprehensively investigated and elucidated. This work shows the importance of surface morphology on the overall SERS effect by studying few-layer Ti3C2Tx MXene-based SERS substrates fabricated by vacuum-assisted filtration (VAF) and spray coating on filter paper. The VAF deposition results in a dense MXene layer suitable for SERS with high spot-to-spot and substrate-to-substrate reproducibility, with a significant limit of detection (LoD) of 20 nM for Rhodamine B analyte. The spray-coated MXenes film revealed lower uniformity, with a LoD of 50 nM for drop-casted analytes. Moreover, we concluded that the distribution of the analyte deposited onto the MXene layer is affected by the presence of MXene aggregates created during the deposition of the MXene layer. Accumulation of the analyte molecules in the vicinity of MXene aggregates was observed for drop-casted deposition of the analyte, which affects the resulting SERS enhancement. Ti3C2Tx MXene layers deposited on filter paper by VAF offer great potential as a cost-effective, easy-to-manufacture, yet robust, platform for sensing applications.

2.
ACS Omega ; 8(47): 44497-44513, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38046334

ABSTRACT

Photothermal therapy (PTT) mediated at the nanoscale has a unique advantage over currently used cancer treatments, by being spatially highly specific and minimally invasive. Although PTT combats traditional tumor treatment approaches, its clinical implementation has not yet been successful. The reasons for its disadvantage include an insufficient treatment efficiency or low tumor accumulation. Here, we present a promising new PTT platform combining a recently emerged two-dimensional (2D) inorganic nanomaterial, MoOx, and a tumor hypoxia targeting element, the monoclonal antibody M75. M75 specifically binds to carbonic anhydrase IX (CAIX), a hypoxia marker associated with many solid tumors with a poor prognosis. The as-prepared nanoconjugates showed highly specific binding to cancer cells expressing CAIX while being able to produce significant photothermal yield after irradiation with near-IR wavelengths. Small aminophosphonic acid linkers were recognized to be more effective over the combination of poly(ethylene glycol) chain and biotin-avidin-biotin bridge in constructing a PTT platform with high tumor-binding efficacy. The in vitro cellular uptake of nanoconjugates was visualized by high-resolution fluorescence microscopy and label-free live cell confocal Raman microscopy. The key to effective cancer treatment may be the synergistic employment of active targeting and noninvasive, tumor-selective therapeutic approaches, such as nanoscale-mediated PTT. The use of active targeting can streamline nanoparticle delivery increasing photothermal yield and therapeutic success.

SELECTION OF CITATIONS
SEARCH DETAIL
...