Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Care Med ; 52(2): 258-267, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37909832

ABSTRACT

OBJECTIVES: Patients at risk of adverse effects related to positive fluid balance could benefit from fluid intake optimization. Less attention is paid to nonresuscitation fluids. We aim to evaluate the heterogeneity of fluid intake at the initial phase of resuscitation. DESIGN: Prospective multicenter cohort study. SETTING: Thirty ICUs across France and one in Spain. PATIENTS: Patients requiring vasopressors and/or invasive mechanical ventilation. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: All fluids administered by vascular or enteral lines were recorded over 24 hours following admission and were classified in four main groups according to their predefined indication: fluids having a well-documented homeostasis goal (resuscitation fluids, rehydration, blood products, and nutrition), drug carriers, maintenance fluids, and fluids for technical needs. Models of regression were constructed to determine fluid intake predicted by patient characteristics. Centers were classified according to tertiles of fluid intake. The cohort included 296 patients. The median total volume of fluids was 3546 mL (interquartile range, 2441-4955 mL), with fluids indisputably required for body fluid homeostasis representing 36% of this total. Saline, glucose-containing high chloride crystalloids, and balanced crystalloids represented 43%, 27%, and 16% of total volume, respectively. Whatever the class of fluids, center of inclusion was the strongest factor associated with volumes. Compared with the first tertile, the difference between the volume predicted by patient characteristics and the volume given was +1.2 ± 2.0 L in tertile 2 and +3.0 ± 2.8 L in tertile 3. CONCLUSIONS: Fluids indisputably required for body fluid homeostasis represent the minority of fluid intake during the 24 hours after ICU admission. Center effect is the strongest factor associated with the volume of fluids. Heterogeneity in practices suggests that optimal strategies for volume and goals of common fluids administration need to be developed.


Subject(s)
Critical Illness , Fluid Therapy , Humans , Prospective Studies , Critical Illness/therapy , Cohort Studies , Fluid Therapy/adverse effects , Crystalloid Solutions , Resuscitation
2.
Ann Intensive Care ; 8(1): 126, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30560440

ABSTRACT

BACKGROUND: The clinical interest of using bubble humidification of oxygen remains controversial. This study was designed to further explore whether delivering dry oxygen instead of bubble-moistened oxygen had an impact on discomfort of ICU patients. METHODS: This randomized multicenter non-inferiority open trial included patients admitted in intensive care unit and receiving oxygen. Any patient receiving non-humidified oxygen (between 0 and 15 L/min) for less than 2 h could participate in the study. Randomization was stratified based on the flow rate at inclusion (less or more than 4 L/min). Discomfort was assessed 6-8 and 24 h after inclusion using a dedicated 15-item scale (quoted from 0 to 150). RESULTS: Three hundred and fifty-four ICU patients receiving non-humidified oxygen were randomized either in the humidified (HO) (n = 172), using bubble humidifiers, or in the non-humidified (NHO) (n = 182) arms. In modified intention-to-treat analysis at H6-H8, the 15-item score was 26.6 ± 19.4 and 29.8 ± 23.4 in the HO and NHO groups, respectively. The absolute difference between scores in both groups was 3.2 [90% CI 0.0; + 6.5] for a non-inferiority margin of 5.3, meaning that the non-inferiority analysis was not conclusive. This was also true for the subgroups of patients receiving either less or more than 4 L/min of oxygen. At H24, using NHO was not inferior compared to HO in the general population and in the subgroup of patients receiving 4 L/min or less of oxygen. However, for patients receiving more than 4 L/min, a post hoc superiority analysis suggested that patients receiving dry oxygen were less comfortable. CONCLUSIONS: Oxygen therapy-related discomfort was low. Dry oxygen could not be demonstrated as non-inferior compared to bubble-moistened oxygen after 6-8 h of oxygen administration. At 24 h, dry oxygen was non-inferior compared to bubble-humidified oxygen for flows below 4 L/min.

SELECTION OF CITATIONS
SEARCH DETAIL
...