Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Vet World ; 17(2): 500-508, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38595669

ABSTRACT

Background and Aim: Stem cell therapy is considered a promising treatment for several neurodegenerative diseases. However, there are very few studies on the use of this therapy in glaucoma models. By detecting the changes produced by glaucoma early, cell therapy could help prevent the events that lead to blindness. In this study, early changes in the optic nerve head (ONH) as detected by optical coherence tomography (OCT) after the application of human Wharton's jelly-derived mesenchymal stromal cells (hWJ-MSCs) in an experimental model of ocular hypertension (OH) were evaluated. Materials and Methods: Fifteen New Zealand rabbits were randomly divided into the following three groups: G1: OH, G2: hWJ-MSCs, and G3: OH + hWJ-MSCs. An OH model was constructed, and the intraocular pressure (IOP) was measured regularly. At week 7, 105/100 µL hWJ-MSCs were intravitreally injected. Retinography and OCT were used to evaluate structural changes in ONH. Results: IOP increased significantly in G1 and G3 from week 3 onward. Retinography revealed more significant optic nerve changes, that is, papillary asymmetry suggestive of optic nerve excavation, vascular alterations, and irregular hypopigmentation peripheral to the optic disk margin, in G1 compared with G3. OH locates the hWJ-MSCs solution in the vitreous in front of the optic nerve. OCT revealed retinal nerve fiber layer (RNFL) reduction in all groups, reduced optic cup volume in G2 and G3 between weeks 1 and 9, and significant ganglion cell layer thickness reduction in G1 and a slight increase in G3. Conclusion: Intravitreal hWJ-MSCs injection produced changes in optic cup volume, which were detected early on by OCT; however, RNFL could not be restored in this OH model.

2.
Ophthalmic Res ; 67(1): 232-247, 2024.
Article in English | MEDLINE | ID: mdl-38447539

ABSTRACT

INTRODUCTION: Glaucoma is a neurodegenerative disease characterized by the loss of retinal ganglion cells. Recent research suggests immunological changes such as cytokine imbalance may affect its pathophysiology. This implies that immunomodulation, like that of mesenchymal cells, could be a potential therapeutic avenue for this disease. However, the effects of intravitreal injections of human Wharton's jelly-derived mesenchymal stromal cells (hWJ-MSCs) on intraocular immune response have not been assessed in ocular hypertension (OH) models. METHODS: We explored this by measuring cytokine levels and expression of other markers, such as glial fibrillary acidic protein (GFAP) and T cells, in 15 randomly divided New Zealand rabbits: G1: OH, G2: hWJ-MSCs, and G3: OH+hWJ-MSCs. We analyzed the aqueous humor (IL-6, IL-8, and TNF-α) and vitreous humor (IFN-γ, IL-10, and TGF-ß) using ELISA and flow cytometry (cell populations), as well as TCD3+, TCD3+/TCD4+, and TCD3+/TCD8+ lymphocytes, and GFAP in the retina and optic nerve through immunohistochemistry. RESULTS: We found a decrease in TNF-α, IL-6, IFN-γ, IL-10, and IL-8 in G3 compared to G1 and an increase in TGF-ß in both G2 and G3. TCD3+ retinal infiltration in all groups was primarily TCD8+ rather than TCD4+ cells, and strong GFAP expression was observed in both the retina and optic nerves in all groups. CONCLUSION: Our results suggest that cellular and humoral immune responses may play a role in glaucomatous optic neuropathy and that intravitreal hWJ-MSCs can induce an immunosuppressive environment by inhibiting proinflammatory cytokines and enhancing regulatory cytokines.


Subject(s)
Cytokines , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Mesenchymal Stem Cells , Ocular Hypertension , Wharton Jelly , Animals , Rabbits , Wharton Jelly/cytology , Humans , Ocular Hypertension/metabolism , Cytokines/metabolism , Aqueous Humor/metabolism , Intraocular Pressure/physiology , Flow Cytometry , Mesenchymal Stem Cell Transplantation/methods , Intravitreal Injections , Immunohistochemistry , Retinal Ganglion Cells/pathology , Glucocorticoids , Optic Nerve/pathology
3.
Sci Rep ; 13(1): 18995, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923822

ABSTRACT

Blockade of the immune checkpoint axis consisting of programmed death-1 (PD-1) and its ligand PD-L1 alleviates the functional inhibition of tumor-infiltrating lymphoid cells yet weakly induces their expansion. Exogenous cytokines could further expand lymphoid cells and thus synergize with αPD-L1 therapy. However, systemic delivery of most cytokines causes severe toxicity due to unspecific expansion of immune cells in the periphery. Here, we modelled local delivery of cytokines and αPD-L1 therapeutics to immune cell-containing in vitro melanoma tumors. Three-dimensional tumor models consisting of 624-MEL cells were co-cultured with human peripheral blood lymphoid cells (PBLs) in presence of the cytokines IL-2, IL-7, IL-15, IL-21 and IFN-γ. To model local gene therapy, melanoma tumors were modified with lentiviral vectors encoding IL-15 fused to IL-15Rα (IL-15/IL-15Rα) and K2-Fc, a fusion of a human PD-L1 specific single domain antibody to immunoglobulin (Ig)G1 Fc. To evaluate the interplay between PBL fractions, NK cells, CD4+ T cells or CD8+ T cells were depleted. Tumor cell killing was followed up using real time imaging and immune cell expansion and activation was evaluated with flow cytometry. Among the tested cytokines, IL-15 was the most potent cytokine in stimulating tumor cell killing and expanding both natural killer (NK) cells and CD8+ T cells. Gene-based delivery of IL-15/IL-15Rα to tumor cells, shows expansion of NK cells, activation of NK cells, CD4+ and CD8+ T cells, and killing of tumor spheroids. Both NK cells and CD8+ T cells are necessary for tumor cell killing and CD4+ T-cell activation was reduced without NK cells. Co-delivery of K2-Fc improved tumor cell killing coinciding with increased activation of NK cells, which was independent of bystander T cells. CD4+ or CD8+ T cells were not affected by the co-delivery of K2-Fc even though NK-cell activation impacted CD4+ T-cell activation. This study demonstrates that gene-based delivery of IL-15/IL-15Rα to tumor cells effectively mediates anti-tumor activity and sensitizes the tumor microenvironment for therapy with αPD-L1 therapeutics mainly by impacting NK cells. These findings warrant further investigation of gene-based IL-15 and K2-Fc delivery in vivo.


Subject(s)
CD8-Positive T-Lymphocytes , Melanoma , Humans , B7-H1 Antigen/genetics , Interleukin-15/genetics , Killer Cells, Natural , Melanoma/genetics , Melanoma/therapy , Cytokines/pharmacology , Genetic Therapy , CD4-Positive T-Lymphocytes , Tumor Microenvironment
4.
Vaccines (Basel) ; 9(8)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34451962

ABSTRACT

Current efforts to understand the epidemiology, transmission dynamics and emergence of novel SARS-CoV-2 variants worldwide has enabled the scientific community to generate critical information aimed at implementing disease surveillance and control measures, as well as to reduce the social, economic and health impact of the pandemic. Herein, we applied an epidemic model coupled with genomic analysis to assess the SARS-CoV-2 transmission dynamics in Colombia. This epidemic model allowed to identify the geographical distribution, Rt dynamics and predict the course of the pandemic considering current implementation of countermeasures. The analysis of the incidence rate per 100,000 inhabitants carried out across different regions of Colombia allowed visualizing the changes in the geographic distribution of cases. The cumulative incidence during the timeframe March 2020 to March 2021 revealed that Bogotá (8063.0), Quindío (5482.71), Amazonas (5055.68), Antioquia (4922.35) and Tolima (4724.41) were the departments with the highest incidence rate. The highest median Rt during the first period evaluated was 2.13 and 1.09 in the second period; with this model, we identified improving opportunities in health decision making related to controlling the pandemic, diagnostic testing capacity, case registration and reporting, among others. Genomic analysis revealed 52 circulating SARS-CoV-2 lineages in Colombia detected from 774 genomes sequenced throughout the first year of the pandemic. The genomes grouped into four main clusters and exhibited 19 polymorphisms. Our results provide essential information on the spread of the pandemic countrywide despite implementation of early containment measures. In addition, we aim to provide deeper phylogenetic insights to better understand the evolution of SARS-CoV-2 in light of the latent emergence of novel variants and how these may potentially influence transmissibility and infectivity.

5.
Front Immunol ; 11: 575488, 2020.
Article in English | MEDLINE | ID: mdl-33117373

ABSTRACT

Mesenchymal stromal cells (MSC) have been used in over 800 clinical trials with encouraging results in the field of transplant medicine and chronic inflammatory diseases. Today, Umbilical Cord (UC)-derived MSC are the second leading source used for clinical purposes, mainly due to its easy access and superior immune modulatory effects. Although the underlying molecular mechanisms of immune suppressive activities have not been fully understood, research over the last decade strongly suggests that MSC-mediated benefits are closely related to activation of secretome networks. Nevertheless, recent findings also point to cytokine-independent mechanisms as key players of MSC-mediated immune modulation. Here, we set up a robust in vitro immune assay using phytohemagglutinin- or anti-CD3/CD28-treated human peripheral blood mononuclear cells in cell-to-cell interaction or in cell-contact independent format with UC-MSC and conducted integrated transcriptome and secretome analyses to dissect molecular pathways driving UC-MSC-mediated immune modulation. Under inflammatory stimuli, multiparametric analyses of the secretome led us to identify cytokine/chemokine expression patterns associated with the induction of MSC-reprogrammed macrophages and T cell subsets ultimately leading to immune suppression. UC-MSC transcriptome analysis under inflammatory challenge allowed the identification of 47 differentially expressed genes, including chemokines, anti- and pro-inflammatory cytokines and adhesion molecules found also in UC-MSC-immunosupressive secretomes, including the novel candidate soluble IL-2R. This study enabled us to track functionally activated UC-MSC during immune suppression and opened an opportunity to explore new pathways involved in immunity control by UC-MSC. We propose that identified immunomodulatory molecules and pathways could potentially be translated into clinical settings in order to improve UC-MSC-therapy quality and efficacy.


Subject(s)
Inflammation/metabolism , Mesenchymal Stem Cells/metabolism , Paracrine Communication , T-Lymphocytes/metabolism , Transcriptome , Cell Differentiation , Cell Proliferation , Cells, Cultured , Coculture Techniques , Cytokines/genetics , Cytokines/metabolism , Fetal Blood/cytology , Gene Regulatory Networks , Humans , Inflammation/genetics , Inflammation/immunology , Lymphocyte Activation , Mesenchymal Stem Cells/immunology , Phenotype , Secretory Pathway , Signal Transduction , T-Lymphocytes/immunology
6.
Int J Mol Sci ; 21(17)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32877987

ABSTRACT

Manufacturing of mesenchymal stromal cell (MSC)-based therapies for regenerative medicine requires the use of suitable supply of growth factors that enhance proliferation, cell stability and potency during cell expansion. Human blood derivatives such as human platelet lysate (hPL) have emerged as a feasible alternative for cell growth supplement. Nevertheless, composition and functional characterization of hPL in the context of cell manufacturing is still under investigation, particularly regarding the content and function of pro-survival and pro-regenerative factors. We performed comparative analyses of hPL, human serum (hS) and fetal bovine serum (FBS) stability and potency to support Wharton's jelly (WJ) MSC production. We demonstrated that hPL displayed low inter-batch variation and unique secretome profile that was not present in hS and FBS. Importantly, hPL-derived factors including PDGF family, EGF, TGF-alpha, angiogenin and RANTES were actively taken up by WJ-MSC to support efficient expansion. Moreover, hPL but not hS or FBS induced secretion of osteoprotegerin, HGF, IL-6 and GRO-alpha by WJ-MSC during the expansion phase. Thus, hPL is a suitable source of factors supporting viability, stability and potency of WJ-MSC and therefore constitutes an essential raw material that in combination with WJ-MSC introduces a great opportunity for the generation of potent regenerative medicine products.


Subject(s)
Blood Platelets/metabolism , Cell Differentiation , Intercellular Signaling Peptides and Proteins/metabolism , Mesenchymal Stem Cells/cytology , Regenerative Medicine , Umbilical Cord/cytology , Wharton Jelly/cytology , Cell Culture Techniques , Cell Proliferation , Cells, Cultured , Humans , Mesenchymal Stem Cells/metabolism , Umbilical Cord/metabolism , Wharton Jelly/metabolism
7.
Pharmaceutics ; 12(9)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971730

ABSTRACT

Mesenchymal stromal cells (MSC) derived from human umbilical cord Wharton's jelly (WJ) have a wide therapeutic potential in cell therapy and tissue engineering because of their multipotential capacity, which can be reinforced through gene therapy in order to modulate specific responses. However, reported methodologies to transfect WJ-MSC using cationic polymers are scarce. Here, WJ-MSC were transfected using 25 kDa branched- polyethylenimine (PEI) and a DNA plasmid encoding GFP. PEI/plasmid complexes were characterized to establish the best transfection efficiencies with lowest toxicity. Expression of MSC-related cell surface markers was evaluated. Likewise, immunomodulatory activity and multipotential capacity of transfected WJ-MSC were assessed by CD2/CD3/CD28-activated peripheral blood mononuclear cells (PBMC) cocultures and osteogenic and adipogenic differentiation assays, respectively. An association between cell number, PEI and DNA content, and transfection efficiency was observed. The highest transfection efficiency (15.3 ± 8.6%) at the lowest toxicity was achieved using 2 ng/µL DNA and 3.6 ng/µL PEI with 45,000 WJ-MSC in a 24-well plate format (200 µL). Under these conditions, there was no significant difference between the expression of MSC-identity markers, inhibitory effect on CD3+ T lymphocytes proliferation and osteogenic/adipogenic differentiation ability of transfected WJ-MSC, as compared with non-transfected cells. These results suggest that the functional properties of WJ-MSC were not altered after optimized transfection with PEI.

8.
Stem Cells Int ; 2019: 7198215, 2019.
Article in English | MEDLINE | ID: mdl-31885622

ABSTRACT

Umbilical cord mesenchymal stromal cells (UC-MSC) are promising candidates for cell therapy due to their potent multilineage differentiation, enhanced self-renewal capacity, and immediate availability for clinical use. Clinical experience has demonstrated satisfactory biosafety profiles and feasibility of UC-MSC application in the allogeneic setting. However, the use of UC-MSC for bone regeneration has not been fully established. A major challenge in the generation of successful therapeutic strategies for bone engineering lies on the combination of highly functional proosteogenic MSC populations and bioactive matrix scaffolds. To address that, in this study we proposed a new approach for the generation of bone-like constructs based on UC-MSC expanded in human platelet lysate (hPL) and evaluated its potential to induce bone structures in vivo. In order to obtain UC-MSC for potential clinical use, we first assessed parameters such as the isolation method, growth supplementation, microbiological monitoring, and cryopreservation and performed full characterization of the cell product including phenotype, growth performance, tree-lineage differentiation, and gene expression. Finally, we evaluated bone-like constructs based on the combination of stimulated UC-MSC and collagen microbeads for in vivo bone formation. UC-MSC were successfully cultured from 100% of processed UC donors, and efficient cell derivation was observed at day 14 ± 3 by the explant method. UC-MSC maintained mesenchymal cell morphology, phenotype, high cell growth performance, and probed multipotent differentiation capacity. No striking variations between donors were recorded. As expected, UC-MSC showed tree-lineage differentiation and gene expression profiles similar to bone marrow- and adipose-derived MSC. Importantly, upon osteogenic and endothelial induction, UC-MSC displayed strong proangiogenic and bone formation features. The combination of hPL-expanded MSC and collagen microbeads led to bone/vessel formation following implantation into an immune competent mouse model. Collectively, we developed a high-performance UC-MSC-based cell manufacturing bioprocess that fulfills the requirements for human application and triggers the potency and effectivity of cell-engineered scaffolds for bone regeneration.

9.
Medicina (Bogotá) ; 40(1(120)): 161-161, Ene-Mar, 2018.
Article in Spanish | LILACS | ID: biblio-910270

ABSTRACT

El uso incremental de células estromales mesenquimales (CEM) para regeneración tisular y su potencial para el manejo de enfermedades de origen inflamatorio dadas sus propiedades inmunomodulatorias, está garantizado a corto plazo. Sin embargo existe un vacío relaciona-do con los mecanismos celulares y moleculares implicados en el proceso inmunomodulatorio por parte de las CEM de gelatina de Wharton (GW). Este estudio evalúa el efecto de las CEM-GW sobre la regulación y función del fenotipo del macrófago en ambientes inflamato-rios. Se realizaron ensayos con células mononucleares de sangre periférica (PBMCs) (N=4) o con la células CD3+ (N=3), estimuladas con anti-CD3/CD28/CD2, evaluando la inhibición de la proliferación de los linfocitos en co-cultivos con CEM-GW (N=3).


Subject(s)
Wharton Jelly , Macrophages
10.
Transfusion ; 57(9): 2225-2233, 2017 09.
Article in English | MEDLINE | ID: mdl-28653354

ABSTRACT

BACKGROUND: The total nucleated cell dosage of umbilical cord blood (UCB) is an important factor in determining successful allogeneic hematopoietic stem cell transplantation after a minimum human leukocyte antigen donor-recipient match. The northern South American population is in need of a new-generation cord blood bank that cryopreserves only units with high total nucleated cell content, thereby increasing the likelihood of use. Colombia set up a public cord blood bank in 2014; and, as a result of its research for improving high total nucleated cell content, a new strategy for UCB collection was developed. STUDY DESIGN AND METHODS: Data from 2933 collected and 759 cryopreserved cord blood units between 2014 and 2015 were analyzed. The correlation of donor and collection variables with cellularity was evaluated. Moreover, blood volume, cell content, CD34+ count, clonogenic capacity, and microbial contamination were assessed comparing the new method, which combines in utero and ex utero techniques, with the conventional strategies. RESULTS: Multivariate analysis confirmed a correlation between neonatal birth weight and cell content. The new collection method increased total nucleated cell content in approximately 26% and did not alter pre-cryopreservation and post-thaw cell recovery, viability, or clonogenic ability. Furthermore, it showed a remarkably low microbial contamination rate (1.2%). CONCLUSION: The strategy for UCB collection developed at the first Colombian public cord blood bank increases total nucleated cell content and does not affect unit quality. The existence of this bank is a remarkable breakthrough for Latin-American patients in need of this kind of transplantation.


Subject(s)
Birth Weight , Blood Banking/methods , Fetal Blood/cytology , Antigens, CD34/analysis , Blood Donors , Blood Specimen Collection , Colombia , Humans , Infant, Newborn , Leukocyte Count , Leukocytes/cytology , Leukocytes/microbiology
11.
Mol Ther Methods Clin Dev ; 1: 14060, 2015.
Article in English | MEDLINE | ID: mdl-26052526

ABSTRACT

Human cytomegalovirus (HCMV) harmfully impacts survival after peripheral blood hematopoietic stem cell transplantation (PB-HSCT). Delayed immune reconstitution after cord blood (CB)-HSCT leads to even higher HCMV-related morbidity and mortality. Towards a feasible dendritic cell therapy to accelerate de novo immunity against HCMV, we validated a tricistronic integrase-defective lentiviral vector (coexpressing GM-CSF, IFN-α, and HCMV pp65 antigen) capable to directly induce self-differentiation of PB and CB monocytes into dendritic cells processing pp65 ("SmyleDCpp65"). In vitro, SmyleDCpp65 resisted HCMV infection, activated CD4(+) and CD8(+) T cells and expanded functional pp65-specific memory cytotoxic T lymphocytes (CTLs). CD34(+) cells obtained from PB and CB were transplanted into irradiated NOD.Rag1(-/-).IL2γc(-/-) mice. Donor-derived SmyleDCpp65 administration after PB-HSCT stimulated peripheral immune effects: lymph node remodeling, expansion of polyclonal effector memory CD8(+) T cells in blood, spleen and bone marrow, and pp65-reactive CTL and IgG responses. SmyleDCpp65 administration after CB-HSCT significantly stimulated thymopoiesis. Expanded frequencies of CD4(+)/CD8(+) T cell precursors containing increased levels of T-cell receptor excision circles in thymus correlated with peripheral expansion of effector memory CTL responses against pp65. The comparative in vivo modeling for PB and CB-HSCT provided dynamic and spatial information regarding human T and B cell reconstitution. In vivo potency supports future clinical development of SmyleDCpp65.

12.
Transplantation ; 99(3): 482-91, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25695787

ABSTRACT

BACKGROUND: Bronchiolitis obliterans syndrome is caused by a fibroproliferative process in lung allografts resulting in irreversible damage. In this study, we induced obliterative bronchiolitis and studied the contribution of regulatory T cells to its development in immune-deficient mice receiving heterotopic porcine bronchus transplants, and major histocompatibility complex-mismatched porcine peripheral blood mononuclear cell. Furthermore, we aimed to corroborate our findings in a humanized mouse model. METHODS: Heterotopic bronchus transplantation was performed in 33 NOD.rag(−/−)γc(−/−) mice, using miniature pigs as tissue donors.The recipient mice then either received saline (negative control), unsorted MHC-mismatched PBMC (positive control), PBMC enriched with CD4(+)CD25(high) cells or PBMC depleted of CD4(+)CD25(high) cells for reconstitution. The results were validated in 28 NOD.rag(−/−)γc(−/−) mice undergoing heterotopic human bronchus transplantation and reconstitution with allogeneic human PBMC. RESULTS: Histological lesions similar to those typical for obliterative bronchiolitis developed in vivo after reconstitution with allogeneic PBMC and were more severe in animals engrafted with PBMC depleted of CD4(+)CD25(high) cells. In contrast, the group reconstituted with PBMC enriched with CD4(+)CD25(high) cells showed well-preserved histology. The results of the humanized model confirmed those obtained in the porcinized model. CONCLUSIONS: In conclusion, both porcinized and humanized mouse models of heterotopic subcutaneous bronchus transplantation imitate the in vivo development of bronchiolitis obliterans syndrome-like lesions and reveal its sensitivity to T-cell regulation.


Subject(s)
Bronchiolitis Obliterans/immunology , Bronchiolitis Obliterans/physiopathology , CD4-Positive T-Lymphocytes/cytology , Interleukin-2 Receptor alpha Subunit/metabolism , Allografts , Animals , Bronchi/pathology , Bronchi/transplantation , Cell Separation , Disease Models, Animal , Female , Humans , Leukocytes, Mononuclear/cytology , Major Histocompatibility Complex , Mice , Mice, Inbred NOD , Mice, Knockout , Phenotype , Swine , Swine, Miniature , T-Lymphocytes, Regulatory/cytology , Tissue Donors
13.
J Immunol ; 192(10): 4636-47, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24740501

ABSTRACT

De novo regeneration of immunity is a major problem after allogeneic hematopoietic stem cell transplantation (HCT). HCT modeling in severely compromised immune-deficient animals transplanted with human stem cells is currently limited because of incomplete maturation of lymphocytes and scarce adaptive responses. Dendritic cells (DC) are pivotal for the organization of lymph nodes and activation of naive T and B cells. Human DC function after HCT could be augmented with adoptively transferred donor-derived DC. In this study, we demonstrate that adoptive transfer of long-lived human DC coexpressing high levels of human IFN-α, human GM-CSF, and a clinically relevant Ag (CMV pp65 protein) promoted human lymphatic remodeling in immune-deficient NOD.Rag1(-/-).IL-2rγ(-/-) mice transplanted with human CD34(+) cells. After immunization, draining lymph nodes became replenished with terminally differentiated human follicular Th cells, plasma B cells, and memory helper and cytotoxic T cells. Human Igs against pp65 were detectable in plasma, demonstrating IgG class-switch recombination. Human T cells recovered from mice showed functional reactivity against pp65. Adoptive immunotherapy with engineered DC provides a novel strategy for de novo immune reconstitution after human HCT and a practical and effective tool for studying human lymphatic regeneration in vivo in immune deficient xenograft hosts.


Subject(s)
Adoptive Transfer , Dendritic Cells/transplantation , Hematopoietic Stem Cell Transplantation , Transplantation Chimera/immunology , Allografts , Animals , Cytomegalovirus/genetics , Cytomegalovirus/immunology , Dendritic Cells/immunology , Female , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Heterografts , Humans , Interferon-alpha/genetics , Interferon-alpha/immunology , Male , Mice , Mice, Inbred NOD , Mice, Knockout , Phosphoproteins/genetics , Phosphoproteins/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Viral Matrix Proteins/genetics , Viral Matrix Proteins/immunology
14.
Arterioscler Thromb Vasc Biol ; 33(9): 2097-104, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23868938

ABSTRACT

OBJECTIVE: Reendothelialization after vascular injury (ie, balloon angioplasty or stent implantation) is clinically extremely relevant to promote vascular healing. We here investigated the therapeutic potential of the toll-like receptor 2/6 agonist macrophage-activating lipopeptide (MALP)-2 on reendothelialization and neointima formation in a murine model of vascular injury. APPROACH AND RESULTS: The left common carotid artery was electrically injured, and reendothelialization was quantified by Evans blue staining after 3 days. A single injection of MALP-2 (1 or 10 µg, IV) after vascular injury accelerated reendothelialization (P<0.001). Proliferation of endothelial cells at the wound margins determined by 5-ethynyl-2'-deoxyuridine incorporation was significantly higher in MALP-2-treated animals (P<0.05). Furthermore, wire injury-induced neointima formation of the left common carotid artery was completely prevented by a single injection of MALP-2 (10 µg, IV). In vitro, MALP-2 induced proliferation (BrdU incorporation) and closure of an artificial wound of endothelial cells (P<0.05) but not of smooth muscle cells. Protein array and ELISA analysis of isolated primary endothelial cells and ex vivo stimulated carotid segments revealed that MALP-2 stimulated the release of multiple growth factors and cytokines predominantly from endothelial cells. MALP-2 induced a strong activation of the mitogen-activated protein kinase cascade in endothelial cells, which was attenuated in smooth muscle cells. Furthermore, MALP-2 significantly enhanced circulating monocytes and hematopoietic progenitor cells. CONCLUSIONS: The toll-like receptor 2/6 agonist MALP-2 promotes reendothelialization and inhibits neointima formation after experimental vascular injury via enhanced proliferation and migration of endothelial cells. Thus, MALP-2 represents a novel therapeutic option to accelerate reendothelialization after vascular injury.


Subject(s)
Carotid Artery Injuries/drug therapy , Carotid Artery, Common/drug effects , Cell Proliferation/drug effects , Endothelial Cells/drug effects , Lipopeptides/pharmacology , Neointima , Toll-Like Receptor 2/agonists , Toll-Like Receptor 6/agonists , Vascular System Injuries/drug therapy , Animals , Carotid Artery Injuries/immunology , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Carotid Artery, Common/immunology , Carotid Artery, Common/metabolism , Carotid Artery, Common/pathology , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Endothelial Cells/immunology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Enzyme-Linked Immunosorbent Assay , Humans , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/immunology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Platelet Aggregation/drug effects , Protein Array Analysis , Time Factors , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 6/metabolism , Vascular System Injuries/immunology , Vascular System Injuries/metabolism , Vascular System Injuries/pathology , Wound Healing/drug effects
15.
Hum Gene Ther ; 24(2): 220-37, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23311414

ABSTRACT

Wilms' tumor 1 antigen (WT1) is overexpressed in acute myeloid leukemia (AML), a high-risk neoplasm warranting development of novel immunotherapeutic approaches. Unfortunately, clinical immunotherapeutic use of WT1 peptides against AML has been inconclusive. With the rationale of stimulating multiantigenic responses against WT1, we genetically programmed long-lasting dendritic cells capable of producing and processing endogenous WT1 epitopes. A tricistronic lentiviral vector co-expressing a truncated form of WT1 (lacking the DNA-binding domain), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-4 (IL-4) was used to transduce human monocytes ex vivo. Overnight transduction induced self-differentiation of monocytes into immunophenotypically stable "SmartDC/tWT1" (GM-CSF(+), IL-4(+), tWT1(+), IL-6(+), IL-8(+), TNF-α(+), MCP-1(+), HLA-DR(+), CD86(+), CCR2(+), CCR5(+)) that were viable for 3 weeks in vitro. SmartDC/tWT1 were produced with peripheral blood mononuclear cells (PBMC) obtained from an FLT3-ITD(+) AML patient and surplus material from a donor lymphocyte infusion (DLI) and used to expand CD8(+) T cells in vitro. Expanded cytotoxic T lymphocytes (CTLs) showed antigen-specific reactivity against WT1 and against WT1(+) leukemia cells. SmartDC/tWT1 injected s.c. into Nod.Rag1(-/-).IL2rγc(-/-) mice were viable in vivo for more than three weeks. Migration of human T cells (huCTLs) to the immunization site was demonstrated following adoptive transfer of huCTLs into mice immunized with SmartDC/tWT1. Furthermore, SmartDC/tWT1 immunization plus adoptive transfer of T cells reactive against WT1 into mice resulted in growth arrest of a WT1(+) tumor. Gene array analyses of SmartDC/tWT1 demonstrated upregulation of several genes related to innate immunity. Thus, SmartDC/tWT1 can be produced in a single day of ex vivo gene transfer, are highly viable in vivo, and have great potential for use as immunotherapy against malignant transformation overexpressing WT1.


Subject(s)
Adoptive Transfer/methods , Dendritic Cells/immunology , Genes, Wilms Tumor , Lentivirus/metabolism , Leukemia, Myeloid, Acute/therapy , Animals , Antineoplastic Agents/immunology , CD8-Positive T-Lymphocytes , Cell Differentiation , Cell Survival , Gene Expression Regulation/immunology , Gene Transfer Techniques , Genetic Therapy , Genetic Vectors , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Interleukin-4/genetics , Interleukin-4/metabolism , Lentivirus/genetics , Leukemia, Myeloid, Acute/immunology , Leukocytes, Mononuclear/metabolism , Lymphocyte Activation , Mice , Monocytes , Oligonucleotide Array Sequence Analysis , Risk Factors
16.
Vaccine ; 30(34): 5118-31, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22691433

ABSTRACT

Integrase-defective lentiviral vectors (ID-LVs) show several hallmarks of conventional lentiviral vectors such as absence of cytotoxic effects and long-term expression in non-replicating target cells. The integration rate of ID-LVs into the genome of target cells is dramatically reduced, which enhances safety and opens perspectives for their use in vaccine development. ID-LVs have been shown to be effective vaccines in mouse models, but functional studies with human cells in vitro and in vivo are lacking. Here, we evaluated whether ID-LVs expressing combinations of cytokines (GM-CSF/IL-4 or GM-CSF/IFN-α) used to transduce human monocytes would result in functional "induced dendritic cells" (iDCs). Overnight transduction of monocytes with high titer ID-LVs generated highly viable (14 days) and immunophenotypically stable iDCs expressing GM-CSF/IL-4 ("SmartDCs") or GM-CSF/IFN-α ("SmyleDCs"). SmartDCs and SmyleDCs maintained in vitro continuously secreted the transgenic cytokines and showed up-regulation of several endogenously produced inflammatory cytokines (IFN-γ, IL-2, -5, -6, and -8). Both iDC types potently stimulated T cells in mixed lymphocyte reactions at levels comparable to conventional DCs (maintained with exogenous cytokines). A single in vitro stimulation of CD8(+) T cells with autologous SmartDCs or SmyleDCs pulsed with peptide pools of pp65 (a human cytomegalovirus antigen) resulted in high expansion of central memory and effector memory CTLs reactive against different pp65 epitopes. We further evaluated the effects of SmartDCs and SmyleDCs to expand anti-pp65 CTLs in vivo using immune deficient NOD/Rag1((-/-))/IL-2rγ((-/-)) (NRG) mice. NRG mice immunized subcutaneously with SmartDCs or SmyleDCs co-expressing the full-length pp65 were subsequently infused with autologous CD8(+) T cells. Both types of iDCs effectively stimulated human CTLs reactive against different pp65 antigenic determinants in vivo. Due to the simplicity of generation, robust viability and combined capacity to stimulate homeostatic, antigenic and multivalent responses, iDCs are promising vaccines to be explored in immunization of lymphopenic patients in the post-transplantation setting.


Subject(s)
Cell Differentiation , Cytokines/immunology , Dendritic Cells/immunology , Lentivirus/metabolism , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Antigens, Viral/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Survival , Culture Media/metabolism , Cytokines/genetics , Cytokines/metabolism , Cytomegalovirus/genetics , Cytomegalovirus/immunology , Dendritic Cells/cytology , Epitopes/immunology , Genetic Vectors/genetics , Genetic Vectors/immunology , Genetic Vectors/metabolism , Humans , Immunity, Cellular , Immunization , Immunophenotyping , Integrases/genetics , Killer Cells, Natural/immunology , Lentivirus/genetics , Lymphocyte Activation , Mice , Mice, Inbred NOD , Monocytes/immunology , Phosphoproteins/genetics , Phosphoproteins/immunology , Phosphoproteins/metabolism , Transgenes , Viral Matrix Proteins/genetics , Viral Matrix Proteins/immunology , Viral Matrix Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/immunology , Viral Proteins/metabolism
17.
Hum Gene Ther Methods ; 23(1): 38-55, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22428979

ABSTRACT

SmartDCs (Self-differentiated Myeloid-derived Antigen-presenting-cells Reactive against Tumors) consist of highly viable dendritic cells (DCs) induced to differentiate with lentiviral vectors (LVs) after an overnight ex vivo transduction. Tricistronic vectors co-expressing cytokines (granulocyte-macrophage-colony stimulating factor [GM-CSF], interleukin [IL]-4) and a melanoma antigen (tyrosine related protein 2 [TRP2]) were used to transduce mouse bone marrow cells or human monocytes. Sixteen hours after transduction, the cells were dispensed in aliquots and cryopreserved for identity, potency, and safety analyses. Thawed SmartDCs readily differentiated into highly viable cells with a DC immunophenotype. Prime/boost subcutaneous administration of 1×10(6) thawed murine SmartDCs into C57BL/6 mice resulted into TRP2-specific CD8(+) T-cell responses and protection against lethal melanoma challenge. Human SmartDC-TRP2 generated with monocytes obtained from melanoma patients secreted endogenous cytokines associated with DC activation and stimulated TRP2-specific autologous T-cell expansion in vitro. Thawed human SmartDCs injected subcutaneously in NOD.Rag1(-/-).IL2rγ(-/-) mice maintained DC characteristics and viability for 1 month in vivo and did not cause any signs of pathology. For development of good manufacturing practices, CD14(+) monocytes selected by magnetic-activated cell separation were transduced in a closed bag system (multiplicity of infection of 5), washed, and cryopreserved. Fifty percent of the monocytes used for transduction were recovered for cryopreservation. Thawed SmartDCs produced in two independent runs expressed the endogenous cytokines GM-CSF and IL-4, and the resulting homogeneous SmartDCs that self-differentiated in vitro contained approximately 1.5-3.0 copies of integrated LVs per cell. Thus, this method facilitates logistics, standardization, and high recovery for the generation of viable genetically reprogrammed DCs for clinical applications.


Subject(s)
Biotechnology/methods , Dendritic Cells/immunology , Genetic Vectors/immunology , Immunotherapy/methods , Lentivirus/genetics , Melanoma/therapy , Animals , Blotting, Western , Cell Line , Cryopreservation , Cytokines/metabolism , DNA Primers/genetics , Dendritic Cells/virology , Flow Cytometry , Fluoresceins , Genes, RAG-1/genetics , Humans , Interleukin Receptor Common gamma Subunit/genetics , Melanoma/immunology , Membrane Proteins , Mice , Mice, Knockout , Peptide Fragments , Succinimides
18.
Arterioscler Thromb Vasc Biol ; 32(5): 1280-8, 2012 May.
Article in English | MEDLINE | ID: mdl-22345171

ABSTRACT

OBJECTIVE: Interleukin-1ß (IL-1ß) is a major cytokine linking inflammation and angiogenesis in pathological vascular processes, such as atherosclerosis and tumor neoangiogenesis. However, signaling pathways mediating IL-1ß-induced proangiogenic processes in endothelial cells (ECs) have barely been elucidated yet. Therefore, the present study investigated IL-1ß-induced proangiogenic signaling in ECs. METHODS AND RESULTS: IL-1ß potently induced tube formation and migration of ECs. This was associated with and dependent on activation of p38-mitogen-activated protein kinase (MAPK) and MAPK-activated protein kinase 2 (MK2) as determined by pharmacological inhibition and gene silencing. Furthermore, silencing of the adaptor protein tumor necrosis factor receptor-associated factor 6 (TRAF6) (lentiviral short hairpin RNA) inhibited these IL-1ß-induced processes. Moreover, IL-1ß promoted translocation of TRAF6 to insoluble cellular fractions (containing membrane rafts/caveolae) and interaction of TRAF6 with caveolin-1. Accordingly, cellular cholesterol depletion (cyclodextrin) and silencing of caveolin-1 (small interfering RNA) inhibited IL-1ß-induced activation of p38-MAPK and MK2, as well as IL-1ß-induced tube formation and migration. Finally, silencing of TRAF6 and MK2 deficiency inhibited IL-1ß-induced microvessel outgrowth in murine aortic rings ex vivo, and deficiency of MK2 or caveolin-1 significantly reduced IL-1ß-induced angiogenesis in mice in vivo (Matrigel plug assay). CONCLUSIONS: IL-1ß assembles a proangiogenic signaling module consisting of caveolin-1, TRAF6, p38-MAPK, and MK2 in ECs, representing a potential target to intervene into angiogenesis-dependent processes and diseases.


Subject(s)
Caveolin 1/metabolism , Endothelium, Vascular/metabolism , Interleukin-1/metabolism , MAP Kinase Kinase 2/metabolism , Neovascularization, Pathologic/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Cell Movement , Disease Models, Animal , Endothelium, Vascular/pathology , Humans , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic/pathology , Signal Transduction
19.
Hum Gene Ther ; 22(10): 1209-24, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21574869

ABSTRACT

Dendritic cell (DC)-based immunization is a potent strategy to direct prompt and durable immune responses against viral reactivations after transplantations. Here, we show that overnight lentiviral vector (LV) gene transfer into human monocytes co-expressing granulocyte-macrophage colony stimulating factor and interleukin (IL)-4 induced self-differentiated DCs (SMART-DCs) with stable DC immunophenotype over weeks in culture and secreted several inflammatory cytokines. SMART-DCs injected subcutaneously in immunodeficient NOD.Rag1(-/-).IL2rγ(-/-) (NRG) mice 1 day after LV transduction were stable for a month in vivo. "Conventional" DCs (cDCs) and SMART-DCs were compared with regard to their potency to accelerate the expansion, biodistribution, and antigenic stimulation of autologous human T cells. Peripheral blood cells obtained from human cytomegalovirus (hCMV)-reactive donors and full-length hCMV pp65 antigenic protein or peptides were used. DCs loaded with pp65 were administered subcutaneously into NRG mice as a preconditioning treatment a week prior to intravenous infusion with T cells. Optical imaging analyses demonstrated that in mice preconditioned with SMART-DC-pp65, T cells were directly recruited to the immunization site and subsequently spread to the spleen and other organs. A dramatic expansion of both human CD8(+) and CD4(+) T cells could be observed within a few days after infusion, and this was associated with consistent measurable CD8(+) effector memory T-cell responses against different pp65 epitopes. Thus, this mouse model demonstrates the proof-of-principle for SMART-DCs to accelerate expansion of human lymphocytes, resulting in poly-functional and antigen-specific immune responses against hCMV-pp65.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Dendritic Cells/transplantation , Immunotherapy/methods , Lymphopenia/therapy , Opportunistic Infections/prevention & control , Animals , Cell Differentiation/immunology , Cell Proliferation , Dendritic Cells/metabolism , Genes, RAG-1/genetics , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Genetic Vectors/metabolism , Humans , Immunologic Memory/immunology , Interleukin Receptor Common gamma Subunit/genetics , Lentivirus , Mice , Mice, Inbred NOD , Mice, Knockout , Monocytes/cytology , Opportunistic Infections/virology , Phosphoproteins/immunology , Transduction, Genetic , Viral Matrix Proteins/immunology
20.
Ann Hematol ; 90(9): 1047-58, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21520003

ABSTRACT

Some 30% of acute myeloid leukemia (AML) patients display an internal tandem duplication (ITD) mutation in the FMS-like tyrosine kinase 3 (FLT3) gene. FLT3-ITDs are known to drive hematopoietic stem cells towards FLT3 ligand independent growth, but the effects on dendritic cell (DC) differentiation during leukemogenesis are not clear. We compared the frequency of cells with immunophenotype of myeloid DC (mDC: Lin(-), HLA-DR(+), CD11c(+), CD86(+)) and plasmacytoid DC (pDC: Lin(-), HLA-DR(+), CD123(+), CD86(+)) in diagnostic samples of 47 FLT3-ITD(-) and 40 FLT3-ITD(+) AML patients. The majority of ITD(+) AML samples showed high frequencies of mDCs or pDCs, with significantly decreased HLA-DR expression compared with DCs detectable in ITD(-) AML samples. Interestingly, mDCs and pDCs sorted out from ITD(+) AML samples contained the ITD insert revealing their leukemic origin and, upon ex vivo culture with cytokines, they acquired DC morphology. Notably, mDC/pDCs were detectable concurrently with single lineage mDCs and pDCs in all ITD(+) AML (n = 11) and ITD(-) AML (n = 12) samples analyzed for mixed lineage DCs (Lin(-), HLA-DR(+), CD11c(+), CD123(+)). ITD(+) AML mDCs/pDCs could be only partially activated with CD40L and CpG for production of IFN-α, TNF-α, and IL-1α, which may affect the anti-leukemia immune surveillance in the course of disease progression.


Subject(s)
Dendritic Cells/pathology , Gene Duplication , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Myeloid Cells/pathology , fms-Like Tyrosine Kinase 3/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Cell Count , Dendritic Cells/metabolism , Disease Progression , Female , Gene Duplication/physiology , Gene Frequency , Humans , Immunophenotyping , Male , Middle Aged , Myeloid Cells/metabolism , Tandem Repeat Sequences/genetics , Up-Regulation/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...