Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 26(20): 5541-5551, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28802076

ABSTRACT

Acid mine drainage (AMD) is characterized by an acid and metal-rich run-off that originates from mining systems. Despite having been studied for many decades, much remains unknown about the microbial community dynamics in AMD sites, especially during their early development, when the acidity is moderate. Here, we describe draft genome assemblies from single cells retrieved from an early-stage AMD sample. These cells belong to the genus Hydrotalea and are closely related to Hydrotalea flava. The phylogeny and average nucleotide identity analysis suggest that all single amplified genomes (SAGs) form two clades that may represent different strains. These cells have the genomic potential for denitrification, copper and other metal resistance. Two coexisting CRISPR-Cas loci were recovered across SAGs, and we observed heterogeneity in the population with regard to the spacer sequences, together with the loss of trailer-end spacers. Our results suggest that the genomes of Hydrotalea sp. strains studied here are adjusting to a quickly changing selective pressure at the microhabitat scale, and an important form of this selective pressure is infection by foreign DNA.


Subject(s)
Bacteroidetes/classification , Clustered Regularly Interspaced Short Palindromic Repeats , Genome, Bacterial , Mining , Acids , Bacteroidetes/genetics , DNA, Bacterial/genetics , Ecosystem , Evolution, Molecular , Phylogeny , Sequence Analysis, DNA , Single-Cell Analysis
2.
Neurology ; 61(9): 1204-10, 2003 Nov 11.
Article in English | MEDLINE | ID: mdl-14610121

ABSTRACT

BACKGROUND: Mesial temporal lobe epilepsy related to hippocampal sclerosis (MTLE-HS) is the most common surgically remediable epileptic syndrome. Ablation of the cellular prion protein (PrP(c)) gene (PRNP) enhances neuronal excitability of the hippocampus in vitro and sensitivity to seizure in vivo, indicating that PrP(c) might be related to epilepsy. OBJECTIVE: To evaluate the genetic contribution of PRNP to MTLE-HS. METHODS: The PRNP coding sequence of DNA from peripheral blood cells of 100 consecutive patients with surgically treated MTLE-HS was compared to that from a group of healthy controls adjusted for sex, age, and ethnicity (n = 180). The presence of PRNP variant alleles was correlated with clinical and presurgical parameters as well as surgical outcome. RESULTS: A variant allele at position 171 (Asn-->Ser), absent in controls, was found in heterozygosis (Asn171Ser) in 23% of patients (p < 0.0001). The PRNP genotypes were not correlated with any clinical or presurgical data investigated. However, patients carrying the Asn171Ser variant had a five times higher chance of continuing to have seizures after temporal lobectomy (95% CI 1.65 to 17.33, p = 0.005) than those carrying the normal allele. At 18 months after surgery, 91.8% of patients with the normal allele at codon 171 were seizure free, in comparison to 68.2% of those carrying Asn171Ser (p = 0.005). CONCLUSIONS: The PRNP variant allele Asn171Ser is highly prevalent in patients with medically untreatable MTLE-HS and influences their surgical outcome. The results suggest that the PRNP variant allele at codon 171 (Asn171Ser) is associated with epileptogenesis in MTLE-HS.


Subject(s)
Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/surgery , Genetic Variation/genetics , Prions/genetics , Sclerosis/genetics , Adult , Amino Acid Substitution , Brain Chemistry , DNA/analysis , Disease-Free Survival , Epilepsy, Temporal Lobe/complications , Ethnicity/statistics & numerical data , Female , Gene Frequency , Hippocampus/pathology , Humans , Magnetic Resonance Imaging , Male , Odds Ratio , Sclerosis/complications , Sclerosis/pathology , Sex Distribution , Treatment Outcome
3.
Biotechniques ; 34(3): 626-8, 630-2, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12661167

ABSTRACT

Finishing is rate limiting for genome projects, and improvements in the efficiency of complete genome-sequence compilation will require improved protocols for gap closure. Here we report a novel approach for extending shotgun contigs and closing gaps that we termed PCR-assisted contig extension (PACE). PACE depends on the capture of rare mismatched interactions that occur between arbitrary primers and template DNA of unknown sequence, even under highly stringent conditions, by means of elevated PCR-cycle repetition and the use of specific anchoring primers corresponding to adjacent regions of known sequence. Using PACE, we have generated extensions with an average of 1 kb from all contigs generated from the shotgun sequencing of a 5-Mb genome, which closed the majority of gaps with a single round of experimentation. This included the generation of multiple extensions for contigs that terminated in one of the eight copies of the rRNA operon. We calculate that the switch from shotgun sequencing to PACE should occur between 5- and 8-fold genome coverage for maximum benefit and minimum overall cost. PACE is a robust and straightforward strategy that should simplify the finishing phase of bacterial genome projects.


Subject(s)
Contig Mapping/methods , Gene Expression Profiling/methods , Genome, Bacterial , Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods , Chromobacterium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...