Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Heliyon ; 8(9): e10483, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36158108

ABSTRACT

Globally, it is estimated that 43 million people are living with human immunodeficiency virus type 1 (HIV-1), and there are more than 600,000 acquired immunodeficiency syndrome (AIDS)-related deaths in 2020. The only way to increase the life expectancy of these patients right now is to use combination antiretroviral therapy (cART) for the lifetime. Due to the integration of the HIV-1 DNA in lymphocytes, the replication of the virus can only be reduced by using antiretroviral drugs. If the drug is stopped, the virus will replicate and reduce the number of lymphocytes. In recent years, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease Cas9-mediated genome editing system has been considered, preventing HIV-1 replication by causing DNA double-stranded breaks (DSBs) or disrupting the integrated virus replication by targeting the provirus. In this study, we utilized the CRISPR/Cas9 without the nuclear localization signal sequence (w/o NLS) system to inhibit the VSV-G-pseudotyped HIV-1 replication by targeting the HIV-1 DNA as a prophylactic method. To this end, we designed a multiplex gRNA (guide RNA) cassette to target the pol, env, and nef/long terminal repeat (nef/LTR) regions of the HIV-1 genome and then cloned it in plasmid expressing no-NLS-Cas9 protein as an all-in-one CRISPR/Cas9 vector. Using HIV-1 pseudovirus transduction into HEK-293T cell lines, our results showed that the CRISPR/Cas9-no NLS system disrupts the pseudotyped HIV-1 DNA and significantly (P-value < 0.0001) decreases the p24 antigen shedding and viral RNA load in cell culture supernatants harvested 48h after virus transduction. Although these results revealed the potential of the CRISPR/Cas9-no NLS nuclease system as a prophylactic strategy against HIV-1 infections, due to inefficient impairments of HIV-1 DNA, further studies are required to enhance its effectiveness and application in clinical practice.

3.
Cancer Treat Res Commun ; 30: 100512, 2022.
Article in English | MEDLINE | ID: mdl-35026533

ABSTRACT

The autophagy pathway is the process whereby cells keep cellular homeostasis and respond to stress via recycling their damaged cellular proteins, organelles, and other cellular components. In the context of cancer, autophagy is a dual-edge sword pro- and anti-tumorigenic role depending on the oncogenic context and stage of tumorigenesis. Cancer cells have a higher dependency on autophagy compared with normal cells because of cellular damages and high demands for energy. The carbon, nitrogen, and molecular oxygen are building blocks for highly proliferative cancer cells which extremely depend on glutaminolysis and aerobic glycolysis; when a cancer cell is restricted to glucose and glutamine, it initiates to activate a stress response pathway using autophagy. Oncogenic tyrosine kinases (OncTKs) and receptor tyrosine kinases (RTKs) activation result in autophagy modulation through activation of the PI3K/AKT/mTORC1 and RAS/MAPK signaling pathways. Targeted inhibition of tyrosine kinases (TKs) and RTKs have recently been considered as cancer therapy but drug resistance and cancer relapse continue to be a major limitation of tyrosine kinase inhibitors (TKIs). Manipulation of autophagy pathway along with TKIs may be a promising strategy to circumvent unknown existing drug-resistance mechanisms that may emerge in a treated patient. In this way, clinical trials are ongoing to modulate autophagy to treat cancer. This review aims to summarize the combination therapy of autophagy affecting compounds with anticancer drugs which target cell signaling pathways, metabolism mechanisms, and epigenetics modification to improve therapeutic efficacy against cancers.

4.
Int Immunopharmacol ; 101(Pt A): 108232, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34673335

ABSTRACT

More than a year after the SARS-CoV-2 pandemic, the Coronavirus disease 19 (COVID-19) is still a major global challenge for scientists to understand the different dimensions of infection and find ways to prevent, treat, and develop a vaccine. On January 30, 2020, the world health organization (WHO) officially announced this new virus as an international health emergency. While many biological and mechanisms of pathogenicity of this virus are still unclear, it seems that cytokine storm resulting from an immune response against the virus is considered the main culprit of the severity of the disease. Despite many global efforts to control the SARS-CoV-2, several problems and challenges have been posed in controlling the COVID-19 infection. These problems include the various mutations, the emergence of variants with high transmissibility, the short period of immunity against the virus, the possibility of reinfection in people improved, lack of specific drugs, and problems in the development of highly sensitive and specific vaccines. In this review, we summarized the results of the current trend and the latest research studies on the characteristics of the structure and genome of the SARS-CoV- 2, new mutations and variants of SARS-CoV-2, pathogenicity, immune response, virus diagnostic tests, potential treatment, and vaccine candidate.


Subject(s)
COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Animals , COVID-19/virology , COVID-19 Testing/methods , COVID-19 Vaccines/therapeutic use , Drug Design , Humans , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , COVID-19 Drug Treatment
5.
Cancer Treat Res Commun ; 27: 100323, 2021.
Article in English | MEDLINE | ID: mdl-33530025

ABSTRACT

Human telomerase reverse transcriptase (hTERT) is an enzyme that is critically involved in elongating and maintaining telomeres length to control cell life span and replicative potential. Telomerase activity is continuously expressed in human germ-line cells and most cancer cells, whereas it is suppressed in most somatic cells. In normal cells, by reducing telomerase activity and progressively shortening the telomeres, the cells progress to the senescence or apoptosis process. However, in cancer cells, telomere lengths remain constant due to telomerase's reactivation, and cells continue to proliferate and inhibit apoptosis, and ultimately lead to cancer development and human death due to metastasis. Studies demonstrated that several DNA and RNA oncoviruses could interact with telomerase by integrating their genome sequence within the host cell telomeres specifically. Through the activation of the hTERT promoter and lengthening the telomere, these cells contributes to cancer development. Since oncoviruses can activate telomerase and increase hTERT expression, there are several therapeutic strategies based on targeting the telomerase of cancer cells like telomerase-targeted peptide vaccines, hTERT-targeting dendritic cells (DCs), hTERT-targeting gene therapy, and hTERT-targeting CRISPR/Cas9 system that can overcome tumor-mediated toleration mechanisms and specifically apoptosis in cancer cells. This study reviews available data on the molecular structure of telomerase and the role of oncoviruses and telomerase interaction in cancer development and telomerase-dependent therapeutic approaches to conquest the cancer cells.


Subject(s)
Neoplasms/genetics , Oncogene Proteins, Viral/metabolism , Retroviridae/pathogenicity , Telomerase/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/genetics , Cellular Senescence/genetics , Disease Models, Animal , Genetic Therapy/methods , Host Microbial Interactions/genetics , Humans , Mice , Neoplasms/therapy , Neoplasms/virology , Oncogene Proteins, Viral/genetics , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Promoter Regions, Genetic , Retroviridae/genetics , Telomerase/antagonists & inhibitors , Telomere/metabolism , Telomere Homeostasis
6.
Viral Immunol ; 32(8): 322-334, 2019 10.
Article in English | MEDLINE | ID: mdl-31483214

ABSTRACT

Autophagy is a finely tuned process in the regulation of innate immunity to avoid excessive inflammatory responses and inflammasome signaling. In contrast, the results of recent studies have shown that autophagy may disease-dependently contribute to the pathogenesis of liver diseases, such as fibrosis, cirrhosis, and hepatocellular carcinoma (HCC) during hepatitis B virus (HBV) infection. HBV has learned to subvert the cell's autophagic machinery to promote its replication. Given the great impact of the autophagy mechanism on the HBV infection and HCC, recognizing these factors may be offered new hope for human intervention and treatment of chronic HBV. This review focuses on recent findings viewing the dual role of autophagy plays in the pathogenesis of HBV infected hepatocytes.


Subject(s)
Autophagy , Carcinoma, Hepatocellular/pathology , Hepatitis B virus/pathogenicity , Hepatitis B/pathology , Liver Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Autophagy/drug effects , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/virology , Cell Death/drug effects , Cytokines/metabolism , Endoplasmic Reticulum Stress , Hepatitis B/drug therapy , Hepatitis B/virology , Hepatitis B virus/physiology , Hepatocytes/drug effects , Hepatocytes/pathology , Hepatocytes/virology , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/virology , Signal Transduction , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...