Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Aerosol Air Qual Res ; 16(11): 2818-2830, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-32747859

ABSTRACT

As part of the Seven Southeast Asian Studies (7SEAS) program, an Aerosol Robotic Network (AERONET) sun photometer and a Micro-Pulse Lidar Network (MPLNET) instrument have been deployed at Singapore to study the regional aerosol environment of the Maritime Continent (MC). In addition, the Navy Aerosol Analysis and Prediction System (NAAPS) is used to model aerosol transport over the region. From 24 September 2009 to 31 March 2011, the relationships between ground-, satellite- and model-based aerosol optical depth (AOD) and particulate matter with aerodynamic equivalent diameters less than 2.5 µm (PM2.5) for air quality applications are investigated. When MPLNET-derived aerosol scale heights are applied to normalize AOD for comparison with surface PM2.5 data, the empirical relationships are shown to improve with an increased 11 %, 10 % and 5 % in explained variances, for AERONET, MODIS and NAAPS respectively. The ratios of root mean square errors to standard deviations for the relationships also show corresponding improvements of 8 %, 6 % and 2 %. Aerosol scale heights are observed to be bimodal with a mode below and another above the strongly-capped/deep near-surface layer (SCD; 0 - 1.35 km). Aerosol extinctions within SCD are well-correlated with surface PM2.5 concentrations, possibly due to strong vertical mixing in the region.

2.
Appl Opt ; 48(8): 1473-84, 2009 Mar 10.
Article in English | MEDLINE | ID: mdl-19277079

ABSTRACT

The role of aerosols in climate and climate change is one of the factors that is least understood at the present. Aerosols' direct interaction with solar radiation is a well understood mechanism that affects Earth's net radiative forcing. However, quantifying its magnitude is more problematic because of the temporal and spatial variability of aerosol particles. To enhance our understanding of the radiative effects of aerosols on the global climate, Singapore has joined the AERONET (Aerosol Robotic Network) worldwide network by contributing ground-based direct Sun measurements performed by means of a multiwavelength Sun-photometer instrument. Data are collected on an hourly basis, then are uploaded to be fully screened and quality assured by AERONET. We use a one year data record (level 1.5/2.0) of measured columnar atmospheric optical depth, spanning from November 2006 to October 2007, to study the monthly and seasonal variability of the aerosol optical depth and the Angström exponent. We performed independent retrievals of these parameters (aerosol optical depth and Angström exponent) by using the photometer's six available bands covering the near-UV to near-IR (380-1080 nm). As a validation, our independent retrievals were compared with AERONET 1.5/2.0 level direct Sun product.

3.
Appl Opt ; 46(14): 2727-42, 2007 May 10.
Article in English | MEDLINE | ID: mdl-17446923

ABSTRACT

Water-leaving radiance, measured just above the ocean surface, contains important information about near-surface or subsurface processes that occur on or below the deep ocean and coastal water. As such, retrieving seawater inherent optical properties (IOPs) is an important step to determining water type, subsurface light field, turbidity, pigment concentration, and sediment loading. However, the retrieval (or inversion) of seawater IOPs from just above water radiance measurements is a multiparameter nonlinear problem that is difficult to solve by conventional optimization methods. The applicability of the simulated annealing algorithm (SA) is explored as a nonlinear global optimizer to solve this multiparameter retrieval problem. The SA algorithm is combined with widely known semianalytical relations for seawater's IOPs to parameter invert these properties from simulated and measured water-leaving reflectance spectra. Furthermore, given the versatility of the SA algorithm, the scheme is extended to retrieve water depth from input reflectance data. Extensive tests and comparisons with in situ and simulated data sets compiled by the International Ocean-Color Coordinating Group are presented. Field data include reflectance spectra acquired with a handheld GER 1500 spectroradiometer and absorption measurements, performed with the AC-9 instrument on waters around Singapore's nearby islands.


Subject(s)
Algorithms , Environmental Monitoring/methods , Models, Chemical , Photometry/methods , Seawater/chemistry , Computer Simulation , Multivariate Analysis , Seawater/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...