Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 48(3): 791-8, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14982766

ABSTRACT

GW433908 is the water-soluble, phosphate ester prodrug of the human immunodeficiency virus type 1 protease inhibitor amprenavir (APV). A high-yield synthesis of GW433908 is achieved by phosphorylation of the penultimate precursor of APV with phosphorous oxychloride (POCl(3)) in pyridine. A single-dose pharmacokinetic study of GW433908 sodium salt in dogs showed that APV exposure was similar to that achieved with an equivalent molar dose of the APV clinical formulation (Agenerase) and that systemic exposure to the prodrug was minimal (0.3% of the APV exposure). However, the sodium salt of GW433908 was a hygroscopic, amorphous solid and thus not suitable for pharmaceutical development. The calcium salt was a developable crystalline solid, but oral dosing afforded only 24% of the APV exposure in dogs compared with Agenerase. Acidification of the dog stomach by coadministration of HCl increased the bioavailability of the calcium salt to levels near those of the sodium salt. Single-dose administration of GW433908 calcium salt in dogs and rats produced portal vein GW433908 concentrations that were maximally 1.72 and 0.79% of those of APV concentrations, respectively. Furthermore, GW433908 had poor transepithelial flux and APV showed significant flux across human-derived Caco-2 cell monolayers (a model of intestinal permeability). Taken together, these results suggest that GW433908 is primarily metabolized to APV at or in the epithelial cells of the intestine and that the prodrug is not substantially absorbed. Based in part on these findings, GW433908 was advanced to clinical development.


Subject(s)
HIV Protease Inhibitors/pharmacology , HIV Protease Inhibitors/pharmacokinetics , Organophosphates/pharmacology , Organophosphates/pharmacokinetics , Prodrugs/pharmacology , Prodrugs/pharmacokinetics , Sulfonamides/pharmacology , Sulfonamides/pharmacokinetics , Animals , Biological Availability , Biotransformation , Caco-2 Cells , Carbamates , Dogs , Furans , Humans , Hydrogen-Ion Concentration , Intestinal Absorption , Male , Mass Spectrometry , Organophosphates/toxicity , Prodrugs/toxicity , Rats , Rats, Wistar , Sulfonamides/toxicity
2.
J Pharm Sci ; 92(10): 2082-9, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14502547

ABSTRACT

Recent in vitro studies have suggested that P-glycoprotein (Pgp) and passive membrane permeability may influence the brain concentrations of non-sedating (second-generation) antihistamines. The purpose of this study was to determine the importance of Pgp-mediated efflux on the in vivo brain distribution of the non-sedating antihistamine cetirizine (Zyrtec), and the structurally related sedating (first-generation) antihistamine hydroxyzine (Atarax). In vitro MDR1-MDCKII monolayer efflux assays demonstrated that cetirizine was a Pgp substrate (B-->A/A-->B + GF120918 ratio = 5.47) with low/moderate passive permeability (PappB-->A = 56.5 nm/s). In vivo, the cetirizine brain-to-free plasma concentration ratios (0.367 to 4.30) were 2.3- to 8.7-fold higher in Pgp-deficient mice compared with wild-type mice. In contrast, hydroxyzine was not a Pgp substrate in vitro (B-->A/A-->B ratio = 0.86), had high passive permeability (PappB-->A + GF120918 = 296 nm/s), and had brain-to-free plasma concentration ratios >73 in both Pgp-deficient and wild-type mice. These studies demonstrate that Pgp-mediated efflux and passive permeability contribute to the low cetirizine brain concentrations in mice and that these properties account for the differences in the sedation side-effect profiles of cetirizine and hydroxyzine.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Brain/metabolism , Cetirizine/pharmacokinetics , Histamine H1 Antagonists, Non-Sedating/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Animals , Area Under Curve , Cell Line , Cetirizine/blood , Chromatography, Liquid , Dogs , Histamine H1 Antagonists, Non-Sedating/blood , Humans , Hydroxyzine/blood , Hydroxyzine/pharmacokinetics , Injections, Intravenous , Male , Mass Spectrometry , Mice , Mice, Knockout , Permeability , Time Factors , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL