Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Vaccines ; 7(1): 146, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36379957

ABSTRACT

The adenovirus (Ad)26 serotype-based vector vaccine Ad26.COV2.S has been used in millions of subjects for the prevention of COVID-19, but potentially elicits persistent anti-vector immunity. We investigated if vaccine-elicited immunity to Ad26 vector-based vaccines significantly influences antigen-specific immune responses induced by a subsequent vaccination with Ad26 vector-based vaccine regimens against different disease targets in non-human primates. A homologous Ad26 vector-based vaccination regimen or heterologous regimens (Ad26/Ad35 or Ad26/Modified Vaccinia Ankara [MVA]) induced target pathogen-specific immunity in animals, but also persistent neutralizing antibodies and T-cell responses against the vectors. However, subsequent vaccination (interval, 26-57 weeks) with homologous and heterologous Ad26 vector-based vaccine regimens encoding different target pathogen immunogens did not reveal consistent differences in humoral or cellular immune responses against the target pathogen, as compared to responses in naïve animals. These results support the sequential use of Ad26 vector-based vaccine regimens targeting different diseases.

2.
Ann Intern Med ; 174(5): 585-594, 2021 05.
Article in English | MEDLINE | ID: mdl-33587687

ABSTRACT

BACKGROUND: Zika virus (ZIKV) may cause severe congenital disease after maternal-fetal transmission. No vaccine is currently available. OBJECTIVE: To assess the safety and immunogenicity of Ad26.ZIKV.001, a prophylactic ZIKV vaccine candidate. DESIGN: Phase 1 randomized, double-blind, placebo-controlled clinical study. (ClinicalTrials.gov: NCT03356561). SETTING: United States. PARTICIPANTS: 100 healthy adult volunteers. INTERVENTION: Ad26.ZIKV.001, an adenovirus serotype 26 vector encoding ZIKV M-Env, administered in 1- or 2-dose regimens of 5 × 1010 or 1 × 1011 viral particles (vp), or placebo. MEASUREMENTS: Local and systemic adverse events; neutralization titers by microneutralization assay (MN50) and T-cell responses by interferon-γ enzyme-linked immunospot and intracellular cytokine staining; and protectivity of vaccine-induced antibodies in a subset of participants through transfer in an exploratory mouse ZIKV challenge model. RESULTS: All regimens were well tolerated, with no safety concerns identified. In both 2-dose regimens, ZIKV neutralizing titers peaked 14 days after the second vaccination, with geometric mean MN50 titers (GMTs) of 1065.6 (95% CI, 494.9 to 2294.5) for 5 × 1010 vp and 956.6 (595.8 to 1535.8) for 1 × 1011 vp. Titers persisted for at least 1 year at a GMT of 68.7 (CI, 26.4-178.9) for 5 × 1010 vp and 87.0 (CI, 29.3 to 258.6) for 1 × 1011 vp. A 1-dose regimen of 1 × 1011 vp Ad26.ZIKV.001 induced seroconversion in all participants 56 days after the first vaccination (GMT, 103.4 [CI, 52.7 to 202.9]), with titers persisting for at least 1 year (GMT, 90.2 [CI, 38.4 to 212.2]). Env-specific cellular responses were induced. Protection against ZIKV challenge was observed after antibody transfer from participants into mice, and MN50 titers correlated with protection in this model. LIMITATION: The study was conducted in a nonendemic area, so it did not assess safety and immunogenicity in a flavivirus-exposed population. CONCLUSION: The safety and immunogenicity profile makes Ad26.ZIKV.001 a promising candidate for further development if the need reemerges. PRIMARY FUNDING SOURCE: Janssen Vaccines and Infectious Diseases.


Subject(s)
Viral Vaccines/immunology , Zika Virus Infection/prevention & control , Adenoviridae/immunology , Adult , Animals , Double-Blind Method , Female , Humans , Male , Mice , United States , Zika Virus/immunology , Zika Virus Infection/immunology
3.
Vaccines (Basel) ; 8(4)2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182279

ABSTRACT

The stalk domain of the hemagglutinin has been identified as a target for induction of protective antibody responses due to its high degree of conservation among numerous influenza subtypes and strains. However, current assays to measure stalk-based immunity are not standardized. Hence, harmonization of assay readouts would help to compare experiments conducted in different laboratories and increase confidence in results. Here, serum samples from healthy individuals (n = 110) were screened using a chimeric cH6/1 hemagglutinin enzyme-linked immunosorbent assay (ELISA) that measures stalk-reactive antibodies. We identified samples with moderate to high IgG anti-stalk antibody levels. Likewise, screening of the samples using the mini-hemagglutinin (HA) headless construct #4900 and analysis of the correlation between the two assays confirmed the presence and specificity of anti-stalk antibodies. Additionally, samples were characterized by a cH6/1N5 virus-based neutralization assay, an antibody-dependent cell-mediated cytotoxicity (ADCC) assay, and competition ELISAs, using the stalk-reactive monoclonal antibodies KB2 (mouse) and CR9114 (human). A "pooled serum" (PS) consisting of a mixture of selected serum samples was generated. The PS exhibited high levels of stalk-reactive antibodies, had a cH6/1N5-based neutralization titer of 320, and contained high levels of stalk-specific antibodies with ADCC activity. The PS, along with blinded samples of varying anti-stalk antibody titers, was distributed to multiple collaborators worldwide in a pilot collaborative study. The samples were subjected to different assays available in the different laboratories, to measure either binding or functional properties of the stalk-reactive antibodies contained in the serum. Results from binding and neutralization assays were analyzed to determine whether use of the PS as a standard could lead to better agreement between laboratories. The work presented here points the way towards the development of a serum standard for antibodies to the HA stalk domain of phylogenetic group 1.

4.
PLoS One ; 12(3): e0174728, 2017.
Article in English | MEDLINE | ID: mdl-28362809

ABSTRACT

Durable protection against complex pathogens is likely to require immunity that comprises both humoral and cellular responses. While heterologous prime-boost regimens based on recombinant, replication-incompetent Adenoviral vectors (AdV) and adjuvanted protein have been able to induce high levels of concomitant humoral and cellular responses, complex manufacturing and handling in the field may limit their success. To combine the benefits of genetic and protein-based vaccination within one vaccine construct and to facilitate their use, we generated Human Adenovirus 35 (HAdV35) vectors genetically encoding a model antigen based on the Plasmodium falciparum (P. falciparum) circumsporozoite (CS) protein and displaying a truncated version of the same antigen (CSshort) via protein IX on the capsid, with or without a flexible glycine-linker and/or a 45Å-spacer. The four tested pIX-antigen display variants were efficiently incorporated and presented on the HAdV35 capsid irrespective of whether a transgene was encoded or not. Transgene-expression and producibility of the display-/expression vectors were not impeded by the pIX-display. In mice, the pIX-modified vectors induced strong humoral antigen-specific immunity that increased with the inclusion of the linker-/spacer molecules, exceeded the responses induced by the genetic, transgene-expressing HAdV35 vector, and surpassed recombinant protein in potency. In addition, the pIX- display/expression vectors elicited high antigen-specific cellular immune responses that matched those of the genetic HAdV35 vector expressing CS. pIX-modified display-/expression HAdV vectors may therefore be a valuable technology for the development of vaccines against complex pathogens, especially in resource-limited settings.


Subject(s)
Adenoviruses, Human/genetics , Capsid Proteins/metabolism , Genetic Vectors/genetics , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Animals , Enzyme-Linked Immunosorbent Assay , Female , Fluorescent Antibody Technique, Indirect , Immunity, Cellular/genetics , Immunity, Cellular/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/genetics , Mice , Mice, Inbred BALB C , Microscopy, Electron
5.
PLoS Pathog ; 11(3): e1004740, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25768938

ABSTRACT

The onset of protective immunity against pathogenic SIV challenge in SIVΔnef-vaccinated macaques is delayed for 15-20 weeks, a process that is related to qualitative changes in CD8+ T cell responses induced by SIVΔnef. As a novel approach to characterize cell differentiation following vaccination, we used multi-target qPCR to measure transcription factor expression in naïve and memory subsets of CD8++ T cells, and in SIV-specific CD8+ T cells obtained from SIVΔnef-vaccinated or wild type SIVmac239-infected macaques. Unsupervised clustering of expression profiles organized naïve and memory CD8+ T cells into groups concordant with cell surface phenotype. Transcription factor expression patterns in SIV-specific CD8+ T cells in SIVΔnef-vaccinated animals were distinct from those observed in purified CD8+ T cell subsets obtained from naïve animals, and were intermediate to expression profiles of purified central memory and effector memory T cells. Expression of transcription factors elicited by SIVΔnef vaccination also varied over time: cells obtained at later time points, temporally associated with greater protection, appeared more central-memory like than cells obtained at earlier time points, which appeared more effector memory-like. Expression of transcription factors associated with effector differentiation, such as ID2 and RUNX3, were decreased over time, while expression of transcription factors associated with quiescence or memory differentiation, such as TCF7, BCOR and EOMES, increased. CD8+ T cells specific for a more conserved epitope expressed higher levels of TBX21 and BATF, and appeared more effector-like than cells specific for an escaped epitope, consistent with continued activation by replicating vaccine virus. These data suggest transcription factor expression profiling is a novel method that can provide additional data complementary to the analysis of memory cell differentiation based on classical phenotypic markers. Additionally, these data support the hypothesis that ongoing stimulation by SIVΔnef promotes a distinct protective balance of CD8+ T cell differentiation and activation states.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , SAIDS Vaccines/immunology , Simian Immunodeficiency Virus/immunology , Transcription Factors/immunology , Viral Regulatory and Accessory Proteins , Animals , CD8-Positive T-Lymphocytes/pathology , Cell Differentiation/immunology , Female , Gene Expression Profiling , Macaca mulatta , SAIDS Vaccines/genetics , Simian Immunodeficiency Virus/genetics , Transcription Factors/genetics
6.
J Immunol ; 184(1): 476-87, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19949078

ABSTRACT

Ongoing antigenic stimulation appears to be an important prerequisite for the persistent expression of programmed death 1 (PD-1), an inhibitory TCR coreceptor of the CD28 family. Although recent publications have emphasized the utility of PD-1 as a marker for dysfunctional T cells in chronic viral infections, its dependence on antigenic stimulation potentially renders it a sensitive indicator of low-level viral replication. To explore the antigenic threshold for the maintenance of PD-1 expression on virus-specific T cells, we compared PD-1 expression on virus-specific and memory T cell populations in controlled and uncontrolled SIV and HIV-1 infection. In both controlled live attenuated SIV infection in rhesus macaques and HIV-1 infection in elite controllers, elevated levels of PD-1 expression were observed on SIV- and HIV-1-specific CD8(+) T cells. However, in contrast to chronic wild-type SIV infection and uncontrolled HIV-1 infection, controlled SIV/HIV-1 infection did not result in increased expression of PD-1 on total memory T cells. PD-1 expression on SIV-specific CD8(+) T cells rapidly decreased after the emergence of CTL escape in cognate epitopes, but was maintained in the setting of low or undetectable levels of plasma viremia in live attenuated SIV-infected macaques. After inoculation of naive macaques with a single-cycle SIV, PD-1 expression on SIV-specific CD8(+) T cells initially increased, but was rapidly downregulated. These results demonstrate that PD-1 can serve as a sensitive indicator of persistent, low-level virus replication and that generalized PD-1 expression on T lymphocytes is a distinguishing characteristic of uncontrolled lentiviral infections.


Subject(s)
Antigens, CD/biosynthesis , Apoptosis Regulatory Proteins/biosynthesis , Biomarkers/analysis , HIV Infections/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , T-Lymphocytes/immunology , Virus Replication/immunology , Animals , Antigens, CD/immunology , Apoptosis Regulatory Proteins/immunology , Flow Cytometry , HIV Infections/metabolism , HIV-1/immunology , Humans , Macaca mulatta , Programmed Cell Death 1 Receptor , Reverse Transcriptase Polymerase Chain Reaction , Simian Acquired Immunodeficiency Syndrome/metabolism , Simian Immunodeficiency Virus/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Viremia
SELECTION OF CITATIONS
SEARCH DETAIL
...