Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biomed Microdevices ; 25(3): 32, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37589770

ABSTRACT

Colorimetric assays rely on detecting colour changes to measure the concentration of target molecules. Paper substrates are commonly used for the detection of biomarkers due to their availability, porous structure, and capillarity. However, the morphological and mechanical properties of paper, such as fibre diameter, pore size, and tensile strength, cannot be easily tuned to meet the specific requirements of colorimetric sensors, including liquid capacity and reagent immobilisation. As an alternative to paper materials, biodegradable polymeric membranes made of electrospun polycaprolactone (PCL) fibres can provide various tunable properties related to fibre diameter and pore size.We aimed to obtain a glucose sensor substrate for colorimetric sensing using electrospinning with PCL. A feeding solution was created by mixing PCL/chloroform and 3,3',5',5'-tetramethylbenzidine (TMB)/ethanol solutions. This solution was electrospun to fabricate a porous membrane composed of microfibres consist of PCL and TMB. The central area of the membrane was made hydrophilic through air plasma treatment, and it was subsequently functionalized with a solution containing glucose oxidase, horseradish peroxidase, and trehalose.The sensing areas were evaluated by measuring colour changes in glucose solutions of varying concentrations. The oxidation reactions of glucose and TMB in sensor substrates were recorded and analysed to establish the correlation between different glucose concentrations and colour changes. For comparison, conventional paper substrates prepared with same parameters were evaluated alongside the electrospun PCL substrates. As a result, better immobilization of reagents and higher sensitivity of glucose were achieved with PCL substrates, indicating their potential usage as a new sensing substrate for bioassays.


Subject(s)
Colorimetry , Polyesters , Glucose , Biological Assay
2.
J Funct Biomater ; 14(5)2023 May 09.
Article in English | MEDLINE | ID: mdl-37233373

ABSTRACT

Multiphasic scaffolds that combine different architectural, physical, and biological properties are the best option for the regeneration of complex tissues such as the periodontium. Current developed scaffolds generally lack architectural accuracy and rely on multistep manufacturing, which is difficult to implement for clinical applications. In this context, direct-writing electrospinning (DWE) represents a promising and rapid technique for developing thin 3D scaffolds with controlled architecture. The current study aimed to elaborate a biphasic scaffold using DWE based on two polycaprolactone solutions with interesting properties for bone and cement regeneration. One of the two scaffold parts contained hydroxyapatite nanoparticles (HAP) and the other contained the cementum protein 1 (CEMP1). After morphological characterizations, the elaborated scaffolds were assessed regarding periodontal ligament (PDL) cells in terms of cell proliferation, colonization, and mineralization ability. The results demonstrated that both HAP- and CEMP1-functionalized scaffolds were colonized by PDL cells and enhanced mineralization ability compared to unfunctionalized scaffolds, as revealed by alizarin red staining and OPN protein fluorescent expression. Taken together, the current data highlighted the potential of functional and organized scaffolds to stimulate bone and cementum regeneration. Moreover, DWE could be used to develop smart scaffolds with the ability to spatially control cellular orientation with suitable cellular activity at the micrometer scale, thereby enhancing periodontal and other complex tissue regeneration.

3.
Biomimetics (Basel) ; 8(1)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36975338

ABSTRACT

While periodontal ligament cells are sensitive to their 3D biomechanical environment, only a few 3D in vitro models have been used to investigate the periodontal cells mechanobiological behavior. The objective of the current study was to assess the capability of a 3D fibrous scaffold to transmit a mechanical loading to the periodontal ligament cells. Three-dimensional fibrous polycaprolactone (PCL) scaffolds were synthetized through electrospinning. Scaffolds seeded with human periodontal cells (103 mL-1) were subjected to static (n = 9) or to a sinusoidal axial compressive loading in an in-house bioreactor (n = 9). At the end of the culture, the dynamic loading seemed to have an influence on the cells' morphology, with a lower number of visible cells on the scaffolds surface and a lower expression of actin filament. Furthermore, the dynamic loading presented a tendency to decrease the Alkaline Phosphatase activity and the production of Interleukin-6 while these two biomolecular markers were increased after 21 days of static culture. Together, these results showed that load transmission is occurring in the 3D electrospun PCL fibrous scaffolds, suggesting that it can be used to better understand the periodontal ligament cells mechanobiology. The current study shows a relevant way to investigate periodontal mechanobiology using 3D fibrous scaffolds.

4.
Acta Biomater ; 123: 123-153, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33359868

ABSTRACT

The field of bone tissue engineering (BTE) focuses on the repair of bone defects that are too large to be restored by the natural healing process. To that purpose, synthetic materials mimicking the natural bone extracellular matrix (ECM) are widely studied and many combinations of compositions and architectures are possible. In particular, the electrospinning process can reproduce the fibrillar structure of bone ECM by stretching a viscoelastic solution under an electrical field. With this method, nano/micrometer-sized fibres can be produced, with an adjustable chemical composition. Therefore, by shaping bioactive ceramics such as silica, bioactive glasses and calcium phosphates through electrospinning, promising properties for their use in BTE can be obtained. This review focuses on the in situ synthesis and simultaneous electrospinning of bioceramic-based fibres while the reasons for using each material are correlated with its bioactivity. Theoretical and practical considerations for the synthesis and electrospinning of these materials are developed. Finally, investigations into the in vitro and in vivo bioactivity of different systems using such inorganic fibres are exposed.


Subject(s)
Silicon Dioxide , Tissue Engineering , Bone and Bones , Calcium Phosphates , Ceramics
5.
Nanotechnology ; 31(39): 395503, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32521511

ABSTRACT

The use of contactless magnetic forces meets numerous needs in microelectromechanical systems (MEMS) or microfluidic devices. In this view, heterogeneous materials integrating magnetic nanostructures within a non-magnetic matrix such as polymer can produce local variations of magnetic field, at the sub-micrometer scale. Here we report on the synthesis of magnetic composites using electrospun nanofilaments and a polydimethylsiloxane (PDMS) matrix. Varying the precursor nature and heat treatment conditions, we obtained single phase filaments of Fe, FeNi, and MFe2O4 (M = Co, Fe, Ni). Thanks to a fine investigation of their structure and morphology, it was possible to measure from magnetically-soft (µ0HC ⩽ 5 mT) to relatively hard (µ0HC up to 93 mT, MR/MS up to 0.5) behaviors. The common one-dimensional shape of these filaments leads to an anisotropic magnetic response. This can be exploited to achieve self-organization of the filaments in arrays within the non-magnetic matrix. We show the first step towards the development of magnetically anisotropic membranes of PDMS with 0.23 wt% Fe filaments. These composite materials are promising for implementing magnetic functions in microsystems while circumventing complex micro-fabrication steps.

6.
Polymers (Basel) ; 12(1)2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31906503

ABSTRACT

To prevent the uncontrolled development of a pathogenic biofilm around a dental implant, an antimicrobial drug-release electrospun membrane, set up between the implant and the gingival tissue, was developed by taking several technical, industrial and regulatory specifications into account. The membrane formulation is made of a blend of poly(l-lactic-co-gycolic acid) (PLGA, 85:15) and poly(l-lactic acide-co-ɛ-caprolactone) (PLC, 70:30) copolymers with chlorhexidine diacetate (CHX) complexed with ß-cyclodextrin (CD). The amount of residual solvent, the mechanical properties and the drug release kinetics were tuned by the copolymers' ratio, between 30% and 100% of PLC, and a CHX loading up to 20% w/w. The membranes were sterilized by γ-irradiation without significant property changes. The fiber's diameter was between 600 nm and 3 µm, depending on the membrane composition and the electrospinning parameters. CHX was released in vitro over 10 days and the bacterial inhibitory concentration, 80 µg·mL-1, was reached within eight days. The optimal membrane, PGLA/PLC/CHX-CD (60%/40%/4%), exhibited a breaking strain of 50%, allowing its safe handling. This membrane and a membrane without CHX-CD were implanted subcutaneous in a rat model. The cell penetration remained low. The next step will be to increase the porosity of the membrane to improve the dynamic cell penetration and tissue remodeling.

7.
ACS Biomater Sci Eng ; 4(12): 3927-3938, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-33418795

ABSTRACT

In recent years, additive manufacturing (AM) technologies have attracted significant interest in many industrial and research fields, particularly in tissue engineering. Printed structures used as physical and bioactive supports for tissue regeneration are becoming increasingly complex so as to mimic natural tissues in order to answer future medical needs. Reproducing the biological environment of a native tissue from the microscopic to the macroscopic scale appears to be the best strategy for effective regeneration. Recent advances in AM have led to the production of scaffolds designed with a high precision. This Review presents results concerning two AM technologies which enable the highest accuracy of scaffold design to be obtained, with a precision down to the nanoscale. The first technique is based on a two-photon polymerization (TPP) process, while the other is based on a direct-writing electrospinning (DWES) system. Here, we present an overview of the fabrication mechanisms, the final scaffold properties, and their applications in tissue engineering. The production of highly resolved structures offers new possibilities for studying cell behavior in a controlled environment and also for adjusting the desired scaffold properties to address current and future needs in tissue engineering. The current technical limitations and future challenges are thus also discussed in this Review.

8.
J Mater Sci Mater Med ; 28(6): 87, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28470445

ABSTRACT

The integration and evolution of implantable medical devices made of bioresorbable polymers and used for temporary biomedical applications are crucial criteria in the success of a therapy and means of follow-up after implantation are needed. The objective of this work is to develop and evaluate a method based on microscopic Fourier Transform InfraRed spectroscopy (FTIR) mappings to monitor the degradation of such polymers on tissue explant sections, after implantation. This technique provided information on their location and on both their composition and crystallinity, which is directly linked to their state of degradation induced predominantly by chain scissions. An in vitro study was first performed on poly(L-lactic acid) (PLLA) meshes to validate the procedure and the assumption that changes observed on FTIR spectra are indeed a consequence of degradation. Then, mappings of in vivo degraded PLLA meshes were realized to follow up their degradation and to better visualize their degradation mechanisms. This work further warrants its translation to medical implants made of copolymers of lactic acid and to other polyesters.


Subject(s)
Absorbable Implants , Polyesters/chemistry , Spectroscopy, Fourier Transform Infrared , Animals , Biocompatible Materials , Equipment and Supplies , Male , Rabbits
9.
ACS Appl Mater Interfaces ; 9(1): 950-957, 2017 Jan 11.
Article in English | MEDLINE | ID: mdl-27973763

ABSTRACT

A process to synthesize continuous conducting nanofibers were developed using PEDOT:PSS as a conducting polymer and an electrospinning method. Experimental parameters were carefully explored to achieve reproducible conductive nanofibers synthesis in large quantities. In particular, relative humidity during the electrospinning process was proven to be of critical importance, as well as doping post-treatment involving glycols and alcohols. The synthesized fibers were assembled as a mat on glass substrates, forming a conductive and transparent electrode and their optoelectronic have been fully characterized. This method produces a conformable conductive and transparent coating that is well-adapted to nonplanar surfaces, having very large aspect ratio features. A demonstration of this property was made using surfaces having deep trenches and high steps, where conventional transparent conductive materials fail because of a lack of conformability.

10.
Nanotechnology ; 26(8): 085603, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25649161

ABSTRACT

We present for the first time an original method to elaborate AlN nanofilaments (NFs) by using a preceramic-based electrospinning process. Initially, an Al-containing precursor (poly(ethylimino)alane) is mixed with an organic spinnable polymer to be electrospun and generate polymeric filaments with a homogeneous diameter. A ceramization step at 1000 °C under ammonia and a crystallization step at 1400 °C under nitrogen are performed to get the final product made of AlN NFs with a diameter ranging from 150 to 200 nm. Studies carried out by high resolution electron microscopy and 3D tomography show their regular morphology, with high chemical purity and polycrystalline nature.

11.
Biores Open Access ; 3(3): 117-26, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24940563

ABSTRACT

Nowadays, the challenge in the tissue engineering field consists in the development of biomaterials designed to regenerate ad integrum damaged tissues. Despite the current use of bioresorbable polyesters such as poly(l-lactide) (PLA), poly(d,l-lactide-co-glycolide) (PLGA), and poly-ɛ-caprolactone in soft tissue regeneration researches, their hydrophobic properties negatively influence the cell adhesion. Here, to overcome it, we have developed a fibronectin (FN)-functionalized electrospun PLGA scaffold for periodontal ligament regeneration. Functionalization of electrospun PLGA scaffolds was performed by alkaline hydrolysis (0.1 or 0.01 M NaOH). Then, hydrolyzed scaffolds were coated by simple deposition of an FN layer (10 µg/mL). FN coating was evidenced by X-ray photoelectron analysis. A decrease of contact angle and greater cell adhesion to hydrolyzed, FN-coated PLGA scaffolds were noticed. Suitable degradation behavior without pH variations was observed for all samples up to 28 days. All treated materials presented strong shrinkage, fiber orientation loss, and collapsed fibers. However, functionalization process using 0.01 M NaOH concentration resulted in unchanged scaffold porosity, preserved chemical composition, and similar mechanical properties compared with untreated scaffolds. The proposed simplified method to functionalize electrospun PLGA fibers is an efficient route to make polyester scaffolds more biocompatible and shows potential for tissue engineering.

12.
Nanoscale ; 2(2): 215-7, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20644796

ABSTRACT

Novel boron nitride (BN) fibers have been developed with diameters ranging from the nano- to microscale by thermal conversion of as-electrospun fibers from polyacrylonitrile and poly[B-(methylamino)borazine] blend solutions. Such a new class of ceramic fibers is seen as potential candidate for thermal management applications and filtration systems in harsh environments.


Subject(s)
Boron Compounds/chemistry , Ceramics/chemistry , Polymers/chemistry , Nanofibers/chemistry , Nanofibers/ultrastructure
13.
Nanotechnology ; 21(12): 125701, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20182009

ABSTRACT

Iron-based 1D nanostructures have been successfully prepared using an electrospinning technique and varying the pyrolysis atmospheres. Hematite (Fe(2)O(3)) nanotubes and polycrystalline Fe(3)C nanofibers were obtained by simple air or mixed gas (H(2), Ar) annealing treatments. Using the air annealing treatment, a high control of the morphology as well as of the wall thickness of the nanotubes was demonstrated with a direct influence of the starting polymer concentration. When mixed gases (H(2) and Ar) were used for the annealing treatments, for the first time polycrystalline Fe(3)C nanofibers composed of carbon graphitic planes were obtained, ensuring Fe(3)C nanoparticle stability and nanofiber cohesion. The morphology and structural properties of all these iron-based 1D nanostructures were fully characterized by SEM, TEM, XRD and Raman spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...