Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Transbound Emerg Dis ; 64(3): 994-997, 2017 Jun.
Article in English | MEDLINE | ID: mdl-26608662

ABSTRACT

Capripoxviruses, comprising sheep pox virus, goat pox virus and lumpy skin disease virus cause serious diseases of domesticated ruminants, notifiable to The World Organization for Animal Health. This report describes the evaluation of a mobile diagnostic system (Enigma Field Laboratory) that performs automated sequential steps for nucleic acid extraction and real-time PCR to detect capripoxvirus DNA within laboratory and endemic field settings. To prepare stable reagents that could be deployed into field settings, lyophilized reagents were used that employed an established diagnostic PCR assay. These stabilized reagents demonstrated an analytical sensitivity that was equivalent, or greater than the established laboratory-based PCR test which utilizes wet reagents, and the limit of detection for the complete assay pipeline was approximately one log10 more sensitive than the laboratory-based PCR assay. Concordant results were generated when the mobile PCR system was compared to the laboratory-based PCR using samples collected from Africa, Asia and Europe (n = 10) and experimental studies (n = 9) representing clinical cases of sheep pox, goat pox and lumpy skin disease. Furthermore, this mobile assay reported positive results in situ using specimens that were collected from a dairy cow in Morogoro, Tanzania, which was exhibiting clinical signs of lumpy skin disease. These data support the use of mobile PCR systems for the rapid and sensitive detection of capripoxvirus DNA in endemic field settings.


Subject(s)
Capripoxvirus/isolation & purification , DNA, Viral/isolation & purification , Poxviridae Infections/veterinary , Real-Time Polymerase Chain Reaction/veterinary , Animals , Capripoxvirus/genetics , Cattle , Cattle Diseases/diagnosis , Cattle Diseases/virology , DNA, Viral/genetics , Female , Goat Diseases/diagnosis , Goat Diseases/virology , Goats , Poxviridae Infections/virology , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Sheep , Sheep Diseases/diagnosis , Sheep Diseases/virology , Tanzania/epidemiology
2.
Transbound Emerg Dis ; 64(3): 861-871, 2017 Jun.
Article in English | MEDLINE | ID: mdl-26617330

ABSTRACT

Accurate, timely diagnosis is essential for the control, monitoring and eradication of foot-and-mouth disease (FMD). Clinical samples from suspect cases are normally tested at reference laboratories. However, transport of samples to these centralized facilities can be a lengthy process that can impose delays on critical decision making. These concerns have motivated work to evaluate simple-to-use technologies, including molecular-based diagnostic platforms, that can be deployed closer to suspect cases of FMD. In this context, FMD virus (FMDV)-specific reverse transcription loop-mediated isothermal amplification (RT-LAMP) and real-time RT-PCR (rRT-PCR) assays, compatible with simple sample preparation methods and in situ visualization, have been developed which share equivalent analytical sensitivity with laboratory-based rRT-PCR. However, the lack of robust 'ready-to-use kits' that utilize stabilized reagents limits the deployment of these tests into field settings. To address this gap, this study describes the performance of lyophilized rRT-PCR and RT-LAMP assays to detect FMDV. Both of these assays are compatible with the use of fluorescence to monitor amplification in real-time, and for the RT-LAMP assays end point detection could also be achieved using molecular lateral flow devices. Lyophilization of reagents did not adversely affect the performance of the assays. Importantly, when these assays were deployed into challenging laboratory and field settings within East Africa they proved to be reliable in their ability to detect FMDV in a range of clinical samples from acutely infected as well as convalescent cattle. These data support the use of highly sensitive molecular assays into field settings for simple and rapid detection of FMDV.


Subject(s)
Cattle Diseases/diagnosis , Foot-and-Mouth Disease Virus/isolation & purification , Foot-and-Mouth Disease/diagnosis , Nucleic Acid Amplification Techniques/veterinary , Africa, Eastern/epidemiology , Animals , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/virology , Foot-and-Mouth Disease/virology , Nucleic Acid Amplification Techniques/methods , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity
3.
Transbound Emerg Dis ; 62(5): e19-29, 2015 Oct.
Article in English | MEDLINE | ID: mdl-24460931

ABSTRACT

This paper describes the molecular characterization of foot-and-mouth disease viruses (FMDV) recovered from outbreaks in Tanzania that occurred between 1967 and 2009. A total of 44 FMDV isolates, containing representatives of serotypes O, A, SAT 1 and SAT 2 from 13 regions of Tanzania, were selected from the FAO World Reference Laboratory for FMD (WRLFMD) virus collection. VP1 nucleotide sequences were determined for RT-PCR amplicons, and phylogenetic reconstructions were determined by maximum likelihood and neighbour-joining methods. These analyses showed that Tanzanian type O viruses fell into the EAST AFRICA 2 (EA-2) topotype, type A viruses fell into the AFRICA topotype (genotype I), type SAT 1 viruses into topotype I and type SAT 2 viruses into topotype IV. Taken together, these findings reveal that serotypes O, A, SAT 1 and SAT 2 that caused FMD outbreaks in Tanzania were genetically related to lineages and topotypes occurring in the East African region. The close genetic relationship of viruses in Tanzania to those from other countries suggests that animal movements can contribute to virus dispersal in sub-Saharan Africa. This is the first molecular description of viruses circulating in Tanzania and highlights the need for further sampling of representative viruses from the region so as to elucidate the complex epidemiology of FMD in Tanzania and sub-Saharan Africa.


Subject(s)
Cattle Diseases/virology , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease/virology , Africa , Animals , Base Sequence , Cattle , Cattle Diseases/epidemiology , Disease Outbreaks/veterinary , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease Virus/classification , Foot-and-Mouth Disease Virus/isolation & purification , Genetic Variation , Molecular Sequence Data , Phylogeny , RNA, Viral/genetics , Sequence Analysis, DNA/veterinary , Tanzania/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL