Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 22(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925080

ABSTRACT

Pathophysiology of chronic neurodegeneration is mainly based on complex mechanisms related to aberrant signal transduction, excitation/inhibition imbalance, excitotoxicity, synaptic dysfunction, oxidative stress, proteotoxicity and protein misfolding, local insulin resistance and metabolic dysfunction, excessive cell death, development of glia-supported neuroinflammation, and failure of neurogenesis. These mechanisms tightly associate with dramatic alterations in the structure and activity of the neurovascular unit (NVU) and the blood-brain barrier (BBB). NVU is an ensemble of brain cells (brain microvessel endothelial cells (BMECs), astrocytes, pericytes, neurons, and microglia) serving for the adjustment of cell-to-cell interactions, metabolic coupling, local microcirculation, and neuronal excitability to the actual needs of the brain. The part of the NVU known as a BBB controls selective access of endogenous and exogenous molecules to the brain tissue and efflux of metabolites to the blood, thereby providing maintenance of brain chemical homeostasis critical for efficient signal transduction and brain plasticity. In Alzheimer's disease, mitochondria are the target organelles for amyloid-induced neurodegeneration and alterations in NVU metabolic coupling or BBB breakdown. In this review we discuss understandings on mitochondria-driven NVU and BBB dysfunction, and how it might be studied in current and prospective NVU/BBB in vitro models for finding new approaches for the efficient pharmacotherapy of Alzheimer's disease.


Subject(s)
Blood-Brain Barrier/physiopathology , Mitochondria/physiology , Models, Neurological , Nerve Degeneration/etiology , Nerve Degeneration/physiopathology , Alzheimer Disease/etiology , Alzheimer Disease/physiopathology , Animals , DNA Damage , DNA, Mitochondrial/metabolism , Humans , In Vitro Techniques , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/physiopathology , Neurons/physiology , Reactive Oxygen Species/metabolism
2.
Neurobiol Dis ; 154: 105340, 2021 07.
Article in English | MEDLINE | ID: mdl-33753288

ABSTRACT

Bergmann glia (BG) are highly specialized radial astrocytes of the cerebellar cortex, which play a key role in the uptake of synaptic glutamate via the excitatory amino acid transporter EAAT1. Multiple lines of evidence suggest that in cerebellar neurodegenerative diseases reactive BG has a negative impact on neuronal function and survival through compromised EAAT activity. A family of such diseases are those caused by expansion of CAG repeats in genes of the ataxin family, resulting in spinocerebellar ataxias (SCA). We investigated the contribution of BG to the pathogenesis of cerebellar neurodegeneration in a model of SCA1, which was induced by expression of a polyglutamine mutant of ataxin-1 (ATXN1[Q85]) in BG specifically. We compared the outcomes with a novel model where we triggered excitotoxicity by a chronic optogenetic activation of BG with channelrhodopsin-2 (ChR2). In both cases we detected evidence of reduced glutamate uptake manifested by prolongation of excitatory postsynaptic currents in Purkinje cells which is consistent with documented reduction of expression and/or function of EAAT1. In both models we detected astroglyosis and Purkinje cells atrophy. Finally, the same pattern was detected in a knock-in mouse which expresses a polyglutamine mutant ataxin-1 ATXN1[Q154] in a non-cell-selective manner. Our results suggest that ATXN1[Q85] and ChR2-induced insult targeted to BG closely mimics SCA1 pathology, where excessive glutamate signaling appears to be a common feature likely being an important contributor to cerebellar neurodegeneration.


Subject(s)
Ataxin-1/biosynthesis , Excitatory Amino Acid Transporter 1/antagonists & inhibitors , Excitatory Amino Acid Transporter 1/biosynthesis , Neuroglia/metabolism , Optogenetics/adverse effects , Purkinje Cells/metabolism , Animals , Ataxin-1/genetics , Cell Death/physiology , Excitatory Amino Acid Transporter 1/genetics , Gene Expression , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neuroglia/pathology , Photic Stimulation/adverse effects , Purkinje Cells/pathology
3.
J Neurosci Methods ; 335: 108616, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32007483

ABSTRACT

Virtual reality (VR) and augmented reality (AR) have become valuable tools to study brains and behaviors resulting in development of new methods of diagnostics and treatment. Neurodegenerаtion is one of the best examples demonstrating efficacy of VR/АR technologies in modern neurology. Development of novel VR systems for rodents and combination of VR tools with up-to-date imaging techniques (i.e. MRI, imaging of neural networks etc.), brain electrophysiology (EEG, patch-clamp), precise analytics (microdialysis) allowed implementing of VR protocols into the animal neurobiology to study brain plasticity, sensorimotor integration, spatial navigation, memory, and decision-making. VR/AR for rodents is а young field of experimental neuroscience and has already provided more consistent testing conditions, less human-animal interaction, opportunities to use a wider variety of experimental parameters. Here we discuss present and future perspectives of using VR/AR to assess brain plasticity, neurogenesis and complex behavior in rodent and human study, and their advantages for translational neuroscience.


Subject(s)
Virtual Reality , Animals , Memory , Neuronal Plasticity , Rodentia , User-Computer Interface
4.
Front Physiol ; 9: 1656, 2018.
Article in English | MEDLINE | ID: mdl-30534080

ABSTRACT

Adipose tissue is recognized as an important organ with metabolic, regulatory, and plastic roles. Adipose tissue-derived stem cells (ASCs) with self-renewal properties localize in the stromal vascular fraction (SVF) being present in a vascular niche, thereby, contributing to local regulation of angiogenesis and vessel remodeling. In the past decades, ASCs have attracted much attention from biologists and bioengineers, particularly, because of their multilineage differentiation potential, strong proliferation, and migration abilities in vitro and high resistance to oxidative stress and senescence. Current data suggest that the SVF serves as an important source of endothelial progenitors, endothelial cells, and pericytes, thereby, contributing to vessel remodeling and growth. In addition, ASCs demonstrate intriguing metabolic and interlineage plasticity, which makes them good candidates for creating regenerative therapeutic protocols, in vitro tissue models and microphysiological systems, and tissue-on-chip devices for diagnostic and regeneration-supporting purposes. This review covers recent achievements in understanding the metabolic activity within the SVF niches (lactate and NAD+ metabolism), which is critical for maintaining the pool of ASCs, and discloses their pro-angiogenic potential, particularly, in the complex therapy of cardiovascular and cerebrovascular diseases.

5.
Front Aging Neurosci ; 10: 234, 2018.
Article in English | MEDLINE | ID: mdl-30127733

ABSTRACT

Blood-brain barrier (BBB) modeling in vitro is a huge area of research covering study of intercellular communications and development of BBB, establishment of specific properties that provide controlled permeability of the barrier. Current approaches in designing new BBB models include development of new (bio) scaffolds supporting barriergenesis/angiogenesis and BBB integrity; use of methods enabling modulation of BBB permeability; application of modern analytical techniques for screening the transfer of metabolites, bio-macromolecules, selected drug candidates and drug delivery systems; establishment of 3D models; application of microfluidic technologies; reconstruction of microphysiological systems with the barrier constituents. Acceptance of idea that BBB in vitro models should resemble real functional activity of the barrier in different periods of ontogenesis and in different (patho) physiological conditions leads to proposal that establishment of BBB in vitro model with alterations specific for aging brain is one of current challenges in neurosciences and bioengineering. Vascular dysfunction in the aging brain often associates with leaky BBB, alterations in perivascular microenvironment, neuroinflammation, perturbed neuronal and astroglial activity within the neurovascular unit, impairments in neurogenic niches where microvascular scaffold plays a key regulatory role. The review article is focused on aging-related alterations in BBB and current approaches to development of "aging" BBB models in vitro.

6.
Rev Neurosci ; 29(5): 567-591, 2018 07 26.
Article in English | MEDLINE | ID: mdl-29306934

ABSTRACT

The contribution of astrocytes and microglia to the regulation of neuroplasticity or neurovascular unit (NVU) is based on the coordinated secretion of gliotransmitters and cytokines and the release and uptake of metabolites. Blood-brain barrier (BBB) integrity and angiogenesis are influenced by perivascular cells contacting with the abluminal side of brain microvessel endothelial cells (pericytes, astrocytes) or by immune cells existing (microglia) or invading the NVU (macrophages) under pathologic conditions. The release of gliotransmitters or cytokines by activated astroglial and microglial cells is provided by distinct mechanisms, affects intercellular communication, and results in the establishment of microenvironment controlling BBB permeability and neuroinflammation. Glial glutamate transporters and connexin and pannexin hemichannels working in the tight functional coupling with the purinergic system serve as promising molecular targets for manipulating the intercellular communications that control BBB permeability in brain pathologies associated with excessive angiogenesis, cerebrovascular remodeling, and BBB-mediated neuroinflammation. Substantial progress in deciphering the molecular mechanisms underlying the (patho)physiology of perivascular glia provides promising approaches to novel clinically relevant therapies for brain disorders. The present review summarizes the current understandings on the secretory machinery expressed in glial cells (glutamate transporters, connexin and pannexin hemichannels, exocytosis mechanisms, membrane-derived microvesicles, and inflammasomes) and the role of secreted gliotransmitters and cytokines in the regulation of NVU and BBB permeability in (patho)physiologic conditions.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Cytokines/metabolism , Pericytes/cytology , Permeability , Animals , Astrocytes/metabolism , Humans
7.
Front Aging Neurosci ; 9: 245, 2017.
Article in English | MEDLINE | ID: mdl-28798684

ABSTRACT

Impairment of hippocampal adult neurogenesis in aging or degenerating brain is a well-known phenomenon caused by the shortage of brain stem cell pool, alterations in the local microenvironment within the neurogenic niches, or deregulation of stem cell development. Environmental enrichment (EE) has been proposed as a potent tool to restore brain functions, to prevent aging-associated neurodegeneration, and to cure neuronal deficits seen in neurodevelopmental and neurodegenerative disorders. Here, we report our data on the effects of environmental enrichment on hippocampal neurogenesis in vivo and neurosphere-forming capacity of hippocampal stem/progenitor cells in vitro. Two models - Alzheimer's type of neurodegeneration and physiological brain aging - were chosen for the comparative analysis of EE effects. We found that environmental enrichment greatly affects the expression of markers specific for stem cells, progenitor cells and differentiated neurons (Pax6, Ngn2, NeuroD1, NeuN) in the hippocampus of young adult rats or rats with Alzheimer's disease (AD) model but less efficiently in aged animals. Application of time-lag mathematical model for the analysis of impedance traces obtained in real-time monitoring of cell proliferation in vitro revealed that EE could restore neurosphere-forming capacity of hippocampal stem/progenitor cells more efficiently in young adult animals (fourfold greater in the control group comparing to the AD model group) but not in the aged rats (no positive effect of environmental enrichment at all). In accordance with the results obtained in vivo, EE was almost ineffective in the recovery of hippocampal neurogenic reserve in vitro in aged, but not in amyloid-treated or young adult, rats. Therefore, EE-based neuroprotective strategies effective in Aß-affected brain could not be directly extrapolated to aged brain.

8.
Rev Neurosci ; 28(4): 397-415, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28195555

ABSTRACT

Adult neurogenesis is one of the most important mechanisms contributing to brain development, learning, and memory. Alterations in neurogenesis underlie a wide spectrum of brain diseases. Neurogenesis takes place in highly specialized neurogenic niches. The concept of neurogenic niches is becoming widely accepted due to growing evidence of the important role of the microenvironment established in the close vicinity to stem cells in order to provide adequate control of cell proliferation, differentiation, and apoptosis. Neurogenic niches represent the platform for tight integration of neurogenesis and angiogenesis supported by specific properties of cerebral microvessel endothelial cells contributing to establishment of partially compromised blood-brain barrier (BBB) for the adjustment of local conditions to the current metabolic needs of stem and progenitor cells. Here, we review up-to-date data on microvascular dynamics in activity-dependent neurogenesis, specific properties of BBB in neurogenic niches, endothelial-driven mechanisms of clonogenic activity, and future perspectives for reconstructing the neurogenic niches in vitro.


Subject(s)
Blood-Brain Barrier/cytology , Neurogenesis , Animals , Blood-Brain Barrier/growth & development , Blood-Brain Barrier/physiology , Humans , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Stem Cell Niche
9.
Front Physiol ; 7: 599, 2016.
Article in English | MEDLINE | ID: mdl-27990124

ABSTRACT

Currently, there is a considerable interest to the assessment of blood-brain barrier (BBB) development as a part of cerebral angiogenesis developmental program. Embryonic and adult angiogenesis in the brain is governed by the coordinated activity of endothelial progenitor cells, brain microvascular endothelial cells, and non-endothelial cells contributing to the establishment of the BBB (pericytes, astrocytes, neurons). Metabolic and functional plasticity of endothelial progenitor cells controls their timely recruitment, precise homing to the brain microvessels, and efficient support of brain angiogenesis. Deciphering endothelial progenitor cells physiology would provide novel engineering approaches to establish adequate microfluidically-supported BBB models and brain microphysiological systems for translational studies.

10.
Rev Neurosci ; 27(4): 365-76, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26641963

ABSTRACT

Patch clamp is a golden standard for studying (patho)physiological processes affecting membranes of excitable cells. This method is rather labor-intensive and requires well-trained professionals and long-lasting experimental procedures; therefore, accurate designing of the experiments with patch clamp methodology as well as collecting and analyzing the data obtained are essential for the widely spread implementation of this method into the routine research practice. Recently, the method became very prospective not only for the characterization of single excitable cells but also for the detailed assessment of intercellular communication, i.e. within the neurovascular unit. Here, we analyze the main advantages and disadvantages of patch clamp method, with special focus on the tendencies in clamping technique improvement with the help of patch electrodes for the assessment of intercellular communication in the brain.


Subject(s)
Brain/physiology , Cell Communication/physiology , Electrophysiology , Neurovascular Coupling/physiology , Action Potentials/physiology , Animals , Electrophysiology/methods , Humans , Patch-Clamp Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...