Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Front Physiol ; 15: 1329765, 2024.
Article in English | MEDLINE | ID: mdl-38384800

ABSTRACT

Introduction: Spaceflight is associated with substantial and variable musculoskeletal (MSK) adaptations. Characterisation of muscle and joint loading profiles can provide key information to better align exercise prescription to astronaut MSK adaptations upon return-to-Earth. A case-study is presented of single-leg hopping in hypogravity to demonstrate the additional benefit computational MSK modelling has when estimating lower-limb MSK loading. Methods: A single male participant performed single-leg vertical hopping whilst attached to a body weight support system to replicate five gravity conditions (0.17, 0.25, 0.37, 0.50, 1 g). Experimental joint kinematics, joint kinetics and ground reaction forces were tracked in a data-tracking direct collocation simulation framework. Ground reaction forces, sagittal plane hip, knee and ankle net joint moments, quadriceps muscle forces (Rectus Femoris and three Vasti muscles), and hip, knee and ankle joint reaction forces were extracted for analysis. Estimated quadriceps muscle forces were input into a muscle adaptation model to predict a meaningful increase in muscle cross-sectional area, defined in (DeFreitas et al., 2011). Results: Two distinct strategies were observed to cope with the increase in ground reaction forces as gravity increased. Hypogravity was associated with an ankle dominant strategy with increased range of motion and net plantarflexor moment that was not seen at the hip or knee, and the Rectus Femoris being the primary contributor to quadriceps muscle force. At 1 g, all three joints had increased range of motion and net extensor moments relative to 0.50 g, with the Vasti muscles becoming the main muscles contributing to quadriceps muscle force. Additionally, hip joint reaction force did not increase substantially as gravity increased, whereas the other two joints increased monotonically with gravity. The predicted volume of exercise needed to counteract muscle adaptations decreased substantially with gravity. Despite the ankle dominant strategy in hypogravity, the loading on the knee muscles and joint also increased, demonstrating this provided more information about MSK loading. Discussion: This approach, supplemented with muscle-adaptation models, can be used to compare MSK loading between exercises to enhance astronaut exercise prescription.

2.
Sci Rep ; 12(1): 15908, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36151260

ABSTRACT

The current body of sprinting biomechanics literature together with the front-side mechanics coaching framework provide various technique recommendations for improving performance. However, few studies have attempted to systematically explore technique modifications from a performance enhancement perspective. The aims of this investigation were therefore to explore how hypothetical technique modifications affect accelerative sprinting performance and assess whether the hypothetical modifications support the front-side mechanics coaching framework. A three-dimensional musculoskeletal model scaled to an international male sprinter was used in combination with direct collocation optimal control to perform (data-tracking and predictive) simulations of the preliminary steps of accelerative sprinting. The predictive simulations differed in the net joint moments that were left 'free' to change. It was found that the 'knee-free' and 'knee-hip-free' simulations resulted in the greatest performance improvements (13.8% and 21.9%, respectively), due to a greater knee flexor moment around touchdown (e.g., 141.2 vs. 70.5 Nm) and a delayed and greater knee extensor moment during stance (e.g., 188.5 vs. 137.5 Nm). Lastly, the predictive simulations which led to the greatest improvements were also found to not exhibit clear and noticeable front-side mechanics technique, thus the underpinning principles of the coaching framework may not be the only key aspect governing accelerative sprinting.


Subject(s)
Running , Acceleration , Biomechanical Phenomena , Humans , Knee , Knee Joint , Male
3.
PeerJ ; 9: e10975, 2021.
Article in English | MEDLINE | ID: mdl-33732550

ABSTRACT

Biomechanical simulation and modelling approaches have the possibility to make a meaningful impact within applied sports settings, such as sprinting. However, for this to be realised, such approaches must first undergo a thorough quantitative evaluation against experimental data. We developed a musculoskeletal modelling and simulation framework for sprinting, with the objective to evaluate its ability to reproduce experimental kinematics and kinetics data for different sprinting phases. This was achieved by performing a series of data-tracking calibration (individual and simultaneous) and validation simulations, that also featured the generation of dynamically consistent simulated outputs and the determination of foot-ground contact model parameters. The simulated values from the calibration simulations were found to be in close agreement with the corresponding experimental data, particularly for the kinematics (average root mean squared differences (RMSDs) less than 1.0° and 0.2 cm for the rotational and translational kinematics, respectively) and ground reaction force (highest average percentage RMSD of 8.1%). Minimal differences in tracking performance were observed when concurrently determining the foot-ground contact model parameters from each of the individual or simultaneous calibration simulations. The validation simulation yielded results that were comparable (RMSDs less than 1.0° and 0.3 cm for the rotational and translational kinematics, respectively) to those obtained from the calibration simulations. This study demonstrated the suitability of the proposed framework for performing future predictive simulations of sprinting, and gives confidence in its use to assess the cause-effect relationships of technique modification in relation to performance. Furthermore, this is the first study to provide dynamically consistent three-dimensional muscle-driven simulations of sprinting across different phases.

4.
Scand J Med Sci Sports ; 30(8): 1387-1397, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32285541

ABSTRACT

Sprint ability develops nonlinearly across childhood and adolescence. However, the underpinning ground reaction force (GRF) production is not fully understood. This study aimed to uncover the kinetic factors that explain these maturation-related sprint performance differences in Japanese boys and girls. A total of 153 untrained schoolchildren (80 boys, 73 girls) performed two 50-m maximal effort sprints over a 52-force-platform system embedded in an indoor track. Maturity offset (years from peak height velocity; PHV) was estimated using anthropometric data and used to categorise the children into six-year-long maturation groups (from group 1 [5.5-4.5 years before PHV] to group 6 [0.5 years before to 0.5 years after PHV). Maximum and mean step-averaged velocities across 26 steps were compared across consecutive maturation groups, with further GRF analysis (means and waveforms [statistical parametric mapping]) performed when velocity differences were observed. For boys, higher maximum velocities (effect size ± 90% CI = 1.63 ± 0.69) were observed in maturation group 2 (4.5-3.5 years before PHV) compared to group 1 (5.5-4.5 years before PHV), primarily attributable to higher antero-posterior GRFs across shorter ground contacts. Maximum velocities increased from maturation group 4 (2.5-1.5 years before PHV) to group 5 (1.5-0.5 years before PHV) in the girls (effect size ± 90% CI = 1.00 ± 0.78), due to longer ground contacts rather than higher GRFs per se. Waveform analyses revealed more effective reversal of braking forces and higher propulsive forces (e.g. 14%-77% of stance 4), particularly for comparisons involving boys, which suggested potentially enhanced stretch-shortening ability. Youth sport practitioners should consider these maturation-specific alterations when evaluating young athletes' sprint abilities.


Subject(s)
Acceleration , Child Development/physiology , Running/physiology , Sexual Maturation/physiology , Biomechanical Phenomena , Child , Female , Humans , Kinetics , Male
5.
Sports Med ; 49(9): 1345-1364, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31209732

ABSTRACT

The start from blocks is a fundamental component of all track and field sprint events (≤ 400 m). This narrative review focusses on biomechanical aspects of the block phase and the subsequent first flight and stance phases. We discuss specific features of technique and how they may be important for a high level of performance during the start. The need to appropriately quantify performance is discussed first; external power has recently become more frequently adopted because it provides a single measure that appropriately accounts for the requirement to increase horizontal velocity as much as possible in as little time as possible. In the "set" position, a relatively wide range of body configurations are adopted by sprinters irrespective of their ability level, and between-sprinter differences in these general positions do not appear to be directly associated with block phase performance. Greater average force production during the push against the blocks, especially from the rear leg and particularly the hip, appears to be important for performance. Immediately after exiting the blocks, shorter first flight durations and longer first stance durations (allowing more time to generate propulsive force) are found in sprinters of a higher performance level. During the first stance phase, the ankle and knee both appear to play an important role in energy generation, and higher levels of performance may be associated with a stiffer ankle joint and the ability to extend the knee throughout stance. However, the role of the sprinter's body configuration at touchdown remains unclear, and the roles of strength and anatomy in these associations between technique and performance also remain largely unexplored. Other aspects such as the sex, age and performance level of the studied sprinters, as well as issues with measurement and comparisons with athletes with amputations, are also briefly considered.


Subject(s)
Biomechanical Phenomena , Running/physiology , Track and Field/physiology , Ankle/physiology , Athletic Performance , Hip/physiology , Humans , Knee/physiology , Leg/physiology , Posture
6.
Sports Biomech ; 18(4): 437-447, 2019 Aug.
Article in English | MEDLINE | ID: mdl-29562837

ABSTRACT

Athletes in inner lanes may be disadvantaged during athletic sprint races containing a bend portion because of the tightness of the bend. We empirically investigated the veracity of modelled estimates of this disadvantage and the effect of running lane on selected kinematic variables. Three-dimensional video analysis was conducted on nine male athletes in lanes 8, 5 and 2 of the bend of an outdoor track (radii: 45.10, 41.41 and 37.72 m, respectively). There was over 2% (p < 0.05) reduction in mean race velocity from lane 8 (left step 9.56 ± 0.43 m/s, right step: 9.49 ± 0.41 m/s) to lane 5 (left step: 9.36 ± 0.51 m/s, right step: 9.30 ± 0.51 m/s), with only slight further reductions from lane 5 to lane 2 (left step: 9.34 ± 0.61 m/s, right step: 9.30 ± 0.63 m/s). Race velocity decreased mainly because of reductions in step frequency as radius decreased. These unique data demonstrate the extent of the disadvantage of inner lane allocation during competition may be greater than previously suspected. Variations in race velocity changes might indicate some athletes are better able to accommodate running at tighter radii than others, which should have implications for athletes' training.


Subject(s)
Athletic Performance/physiology , Running/physiology , Track and Field/physiology , Biomechanical Phenomena , Competitive Behavior/physiology , Humans , Male , Models, Theoretical , Time and Motion Studies , Video Recording , Young Adult
7.
Scand J Med Sci Sports ; 28(12): 2527-2535, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30230037

ABSTRACT

Forces applied to the ground during sprinting are vital to performance. This study aimed to understand how specific aspects of ground reaction force waveforms allow some individuals to continue to accelerate beyond the velocity plateau of others. Twenty-eight male sprint specialists and 24 male soccer players performed maximal-effort 60-m sprints. A 54-force-plate system captured ground reaction forces, which were used to calculate horizontal velocity profiles. Touchdown velocities of steps were matched (8.00, 8.25, and 8.50 m/s), and the subsequent ground contact forces were analyzed. Mean forces were compared across groups and statistical parametric mapping (t tests) assessed for differences between entire force waveforms. When individuals contacted the ground with matched horizontal velocity, ground contact durations were similar. Despite this, sprinters produced higher average horizontal power (15.7-17.9 W/kg) than the soccer players (7.9-11.9 W/kg). Force waveforms did not differ in the initial braking phase (0%-~20% of stance). However, sprinters attenuated eccentric force more in the late braking phase and produced a higher antero-posterior component of force across the majority of the propulsive phase, for example, from 31%-82% and 92%-100% of stance at 8.5 m/s. At this velocity, resultant forces were also higher (33%-83% and 86%-100% of stance) and the force vector was more horizontally orientated (30%-60% and 95%-98% of stance) in the sprinters. These findings illustrate the mechanisms which allowed the sprinters to continue accelerating beyond the soccer players' velocity plateau. Moreover, these force production demands provide new insight regarding athletes' strength and technique training requirements to improve acceleration at high velocity.


Subject(s)
Acceleration , Biomechanical Phenomena , Running/physiology , Soccer/physiology , Athletes , Athletic Performance , Humans , Male , Young Adult
8.
Sports Med Open ; 4(1): 24, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29869300

ABSTRACT

BACKGROUND: The study of human movement within sports biomechanics and rehabilitation settings has made considerable progress over recent decades. However, developing a motion analysis system that collects accurate kinematic data in a timely, unobtrusive and externally valid manner remains an open challenge. MAIN BODY: This narrative review considers the evolution of methods for extracting kinematic information from images, observing how technology has progressed from laborious manual approaches to optoelectronic marker-based systems. The motion analysis systems which are currently most widely used in sports biomechanics and rehabilitation do not allow kinematic data to be collected automatically without the attachment of markers, controlled conditions and/or extensive processing times. These limitations can obstruct the routine use of motion capture in normal training or rehabilitation environments, and there is a clear desire for the development of automatic markerless systems. Such technology is emerging, often driven by the needs of the entertainment industry, and utilising many of the latest trends in computer vision and machine learning. However, the accuracy and practicality of these systems has yet to be fully scrutinised, meaning such markerless systems are not currently in widespread use within biomechanics. CONCLUSIONS: This review aims to introduce the key state-of-the-art in markerless motion capture research from computer vision that is likely to have a future impact in biomechanics, while considering the challenges with accuracy and robustness that are yet to be addressed.

9.
J Sports Sci ; 36(17): 1930-1936, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29336211

ABSTRACT

Athletes initiating skeleton runs differ in the number of steps taken before loading the sled. We aimed to understand how experimentally modifying loading distance influenced sled velocity and overall start performance. Ten athletes (five elite, five talent; 67% of all national athletes) underwent two to four sessions, consisting of two dry-land push-starts in each of three conditions (preferred, long and short loading distances). A magnet encoder on the sled wheel provided velocity profiles and the overall performance measure (sled acceleration index). Longer pre-load distances (12% average increase from preferred to long distances) were related to higher pre-load velocity (r = 0.94), but lower load effectiveness (r = -0.75; average reduction 29%). Performance evaluations across conditions revealed that elite athletes' preferred distance push-starts were typically superior to the other conditions. Short loading distances were generally detrimental, whereas pushing the sled further improved some talent-squad athletes' performance. Thus, an important trade-off between generating high pre-load velocity and loading effectively was revealed, which coaches should consider when encouraging athletes to load later. This novel intervention study conducted within a real-world training setting has demonstrated the scope to enhance push-start performance by altering loading distance, particularly in developing athletes with less extensive training experience.


Subject(s)
Athletic Performance/physiology , Running/physiology , Sports/physiology , Acceleration , Female , Humans , Male , Motor Skills/physiology , Task Performance and Analysis , Young Adult
10.
J Electromyogr Kinesiol ; 39: 1-7, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29353138

ABSTRACT

Generalised Joint Hypermobility including shoulder hypermobility (GJHS) in swimmers is considered an intrinsic risk factor for shoulder injuries. The aim was to investigate the association of GJHS with shoulder strength, fatigue development and muscle activity during swimming-related shoulder rotations. Totally, 38 competitive swimmers (aged 13-17 years) participated, 19 were competitive swimmers with GJHS and 19 were age, sex and club matched swimmers without GJHS. Concentric isokinetic force in medial and lateral rotations were measured at 60°/s (5 repetitions) and 180°/s (10 repetitions). Electromyographic activity was measured from upper trapezius, lower trapezius, serratus anterior, infraspinatus and pectoralis major muscles. Swimmers with GJHS produced significantly lower peak torque (0.53 vs. 0.60 Nm/kg; p = .047) and maximum work (0.62 vs. 0.71 J/kg; p = .031) than controls during medial rotation (60°/s). Swimmers with GJHS showed significantly larger isokinetic fatigue at 180°/s (0.321 J/repetition; p = .010), and tendencies to lower levels of muscle activity in infraspinatus (20%, p = .066) and pectoralis major (34%, p = .092) at 60°/s during medial rotation. Young competitive swimmers with GJHS, despite no formal diagnosis, displayed strength and fatigue deficits in medial rotation, potentially inherent with greater risk of shoulder injury. Whether GJHS swimmers benefit from medial rotation strengthening is an important topic for future studies.


Subject(s)
Muscle Fatigue , Muscle Strength , Shoulder/physiology , Swimming/physiology , Adolescent , Female , Humans , Male , Muscle, Skeletal/physiology , Range of Motion, Articular , Shoulder Joint/physiology , Torque
11.
Int J Sports Physiol Perform ; 13(4): 412-419, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-28872389

ABSTRACT

PURPOSE: Athletes' force-power characteristics influence sled velocity during the skeleton start, which is a crucial determinant of performance. This study characterized force-power profile changes across an 18-month period and investigated the associations between these changes and start performance. METHODS: Seven elite- and 5 talent-squad skeleton athletes' (representing 80% of registered athletes in the country) force-power profiles and dry-land push-track performances were assessed at multiple time points over two 6-month training periods and one 5-month competition season. Force-power profiles were evaluated using an incremental leg-press test (Keiser A420), and 15-m sled velocity was recorded using photocells. RESULTS: Across the initial maximum strength development phases, increases in maximum force (Fmax) and decreases in maximum velocity (Vmax) were typically observed. These changes were greater for talent (23.6% and -12.5%, respectively) compared with elite (6.1% and -7.6%, respectively) athletes. Conversely, decreases in Fmax (elite -6.7% and talent -10.3%) and increases in Vmax (elite 8.1% and talent 7.7%) were observed across the winter period, regardless of whether athletes were competing (elite) or accumulating sliding experience (talent). When the training emphasis shifted toward higher-velocity, sprint-based exercises in the second training season, force-power profiles seemed to become more velocity oriented (higher Vmax and more negative force-velocity gradient), which was associated with greater improvements in sled velocity (r = .42 and -.45, respectively). CONCLUSIONS: These unique findings demonstrate the scope to influence force-power-generating capabilities in well-trained skeleton athletes across different training phases. To enhance start performance, it seems important to place particular emphasis on increasing maximum muscle-contraction velocity.


Subject(s)
Athletic Performance/physiology , Physical Conditioning, Human/methods , Resistance Training/methods , Sports/physiology , Adaptation, Physiological , Adult , Competitive Behavior/physiology , Female , Humans , Leg/physiology , Male , Muscle Strength/physiology , Running/physiology , Young Adult
12.
Sports Biomech ; 17(2): 168-179, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28632062

ABSTRACT

The development of velocity across the skeleton start is critical to performance, yet poorly understood. We aimed to understand which components of the sled velocity profile determine performance and how physical abilities influence these components. Thirteen well-trained skeleton athletes (>85% of athletes in the country) performed dry-land push-starts alongside countermovement jump and sprint tests at multiple time-points. A magnet encoder attached to the sled wheel provided velocity profiles, which were characterised using novel performance descriptors. Stepwise regression revealed four variables (pre-load velocity, pre-load distance, load effectiveness, velocity drop) to explain 99% variance in performance (ß weights: 1.70, -0.81, 0.25, -0.07, respectively). Sprint times and jump ability were associated (r ± 90% CI) with pre-load velocity (-0.70 ± 0.27 and 0.88 ± 0.14, respectively) and distance (-0.48 ± 0.39 and 0.67 ± 0.29, respectively), however, unclear relationships between both physical measures and load effectiveness (0.33 ± 0.44 and -0.35 ± 0.48, respectively) were observed. Athletes should develop accelerative ability to attain higher velocity earlier on the track. Additionally, the loading phase should not be overlooked and may be more influenced by technique than physical factors. Future studies should utilise this novel approach when evaluating skeleton starts or interventions to enhance performance.


Subject(s)
Athletic Performance/physiology , Running/physiology , Snow Sports/physiology , Acceleration , Biomechanical Phenomena/physiology , Female , Humans , Male , Regression Analysis , Sports Equipment , Time and Motion Studies , Young Adult
13.
Int J Sports Physiol Perform ; 13(6): 755-762, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29140147

ABSTRACT

PURPOSE: To understand how training periodization influences sprint performance and key step characteristics over an extended training period in an elite sprint training group. METHODS: Four sprinters were studied during 5 mo of training. Step velocities, step lengths, and step frequencies were measured from video of the maximum velocity phase of training sprints. Bootstrapped mean values were calculated for each athlete for each session, and 139 within-athlete, between-sessions comparisons were made with a repeated-measures analysis of variance. RESULTS: As training progressed, a link in the changes in velocity and step frequency was maintained. There were 71 between-sessions comparisons with a change in step velocity yielding at least a large effect size (>1.2), of which 73% had a correspondingly large change in step frequency in the same direction. Within-athlete mean session step length remained relatively constant throughout. Reductions in step velocity and frequency occurred during training phases of high-volume lifting and running, with subsequent increases in step velocity and frequency happening during phases of low-volume lifting and high-intensity sprint work. CONCLUSIONS: The importance of step frequency over step length to the changes in performance within a training year was clearly evident for the sprinters studied. Understanding the magnitudes and timings of these changes in relation to the training program is important for coaches and athletes. The underpinning neuromuscular mechanisms require further investigation but are likely explained by an increase in force-producing capability followed by an increase in the ability to produce that force rapidly.


Subject(s)
Athletic Performance/physiology , Physical Conditioning, Human/methods , Running/physiology , Acceleration , Adolescent , Adult , Analysis of Variance , Biomechanical Phenomena , Gait/physiology , Humans , Longitudinal Studies , Male , Time Factors , Time and Motion Studies , Video Recording , Young Adult
14.
Int J Sports Physiol Perform ; 12(1): 81-89, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27140284

ABSTRACT

PURPOSE: An extensive battery of physical tests is typically employed to evaluate athletic status and/or development, often resulting in a multitude of output variables. The authors aimed to identify independent physical predictors of elite skeleton start performance to overcome the general problem of practitioners employing multiple tests with little knowledge of their predictive utility. METHODS: Multiple 2-d testing sessions were undertaken by 13 high-level skeleton athletes across a 24-wk training season and consisted of flexibility, dry-land push-track, sprint, countermovement-jump, and leg-press tests. To reduce the large number of output variables to independent factors, principal-component analysis (PCA) was conducted. The variable most strongly correlated to each component was entered into a stepwise multiple-regression analysis, and K-fold validation assessed model stability. RESULTS: PCA revealed 3 components underlying the physical variables: sprint ability, lower-limb power, and strength-power characteristics. Three variables that represented these components (unresisted 15-m sprint time, 0-kg jump height, and leg-press force at peak power, respectively) significantly contributed (P < .01) to the prediction (R2 = .86, 1.52% standard error of estimate) of start performance (15-m sled velocity). Finally, the K-fold validation revealed the model to be stable (predicted vs actual R2 = .77; 1.97% standard error of estimate). CONCLUSIONS: Only 3 physical-test scores were needed to obtain a valid and stable prediction of skeleton start ability. This method of isolating independent physical variables underlying performance could improve the validity and efficiency of athlete monitoring, potentially benefitting sport scientists, coaches, and athletes alike.


Subject(s)
Athletic Performance/physiology , Exercise Test/methods , Sports/physiology , Female , Humans , Lower Extremity/physiology , Male , Muscle Strength/physiology , Physical Conditioning, Human/methods , Plyometric Exercise , Principal Component Analysis , Regression Analysis , Resistance Training/methods , Young Adult
15.
Physiol Meas ; 37(4): 596-609, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27027548

ABSTRACT

Dual-energy x-ray absorptiometry (DXA) imaging is considered to provide a valid and reliable estimation of body composition when stringent scanning protocols are adopted. However, applied practitioners are not always able to achieve this level of control and the subsequent impact on measurement precision is not always taken into account when evaluating longitudinal body composition changes. The primary aim of this study was to establish the reliability of DXA in an applied elite sport setting to investigate whether real body composition changes can be detected. Additionally, the performance implications of these changes during the training year were investigated. Forty-eight well-trained athletes (from four diverse sports) underwent two DXA scans using a 'real-world' approach (with limited pre-scan controls), typically within 48 h, to quantify typical error of measurement (TEM). Twenty-five athletes underwent further scans, before and after specific training and competition blocks. 'True' body composition changes were evaluated using 2 × TEM thresholds. Twelve bob skeleton athletes also performed countermovement jump and leg press tests at each time point. Many 'true' body composition changes were detected and coincided with the primary training emphases (e.g. lean mass gains during hypertrophy-based training). Clear relationships (r ± 90% CI) were observed between performance changes (countermovement jump and leg press) and changes in lean mass (0.53 ± 0.26 and 0.35 ± 0.28, respectively) and fat mass (-0.44 ± 0.27 and -0.37 ± 0.28, respectively). DXA was able to detect real body composition changes without the use of stringent scanning controls. Associations between changes in body composition and performance demonstrated the potential influence of these changes on strength and power indices.


Subject(s)
Absorptiometry, Photon/methods , Athletes , Body Composition , Adult , Exercise , Female , Humans , Male , Time Factors , Young Adult
16.
Sports Biomech ; 14(2): 232-45, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26102345

ABSTRACT

This study determined the effects of simulated technique manipulations on early acceleration performance. A planar seven-segment angle-driven model was developed and quantitatively evaluated based on the agreement of its output to empirical data from an international-level male sprinter (100 m personal best = 10.28 s). The model was then applied to independently assess the effects of manipulating touchdown distance (horizontal distance between the foot and centre of mass) and range of ankle joint dorsiflexion during early stance on horizontal external power production during stance. The model matched the empirical data with a mean difference of 5.2%. When the foot was placed progressively further forward at touchdown, horizontal power production continually reduced. When the foot was placed further back, power production initially increased (a peak increase of 0.7% occurred at 0.02 m further back) but decreased as the foot continued to touchdown further back. When the range of dorsiflexion during early stance was reduced, exponential increases in performance were observed. Increasing negative touchdown distance directs the ground reaction force more horizontally; however, a limit to the associated performance benefit exists. Reducing dorsiflexion, which required achievable increases in the peak ankle plantar flexor moment, appears potentially beneficial for improving early acceleration performance.


Subject(s)
Ankle Joint/physiology , Athletic Performance , Computer Simulation , Muscle, Skeletal/physiopathology , Running/physiology , Acceleration , Biomechanical Phenomena , Electromyography , Humans , Male , Young Adult
17.
Sports Biomech ; 14(1): 106-21, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25896099

ABSTRACT

This study investigated changes in performance and technique that occur during maximal effort bend sprinting compared with straight-line sprinting under typical outdoor track conditions. Utilising a repeated measures design, three-dimensional video analysis was conducted on seven male sprinters in both conditions (bend radius: 37.72 m). Mean race velocity decreased from 9.86  to 9.39 m/s for the left step (p = 0.008) and from 9.80  to 9.33 m/s for the right step (p = 0.004) on the bend compared with the straight, a 4.7% decrease for both steps. This was mainly due to a 0.11 Hz (p = 0.022) decrease in step frequency for the left step and a 0.10 m (p = 0.005) reduction in race step length for the right step. The left hip was 4.0° (p = 0.049) more adducted at touchdown on the bend than the straight. Furthermore, the bend elicited significant differences between left and right steps in a number of variables including ground contact time, touchdown distance and hip flexion/extension and abduction/adduction angles. The results indicate that the roles of the left and right steps may be functionally different during bend sprinting. This specificity should be considered when designing training programmes.


Subject(s)
Athletic Performance/physiology , Running/physiology , Track and Field/physiology , Adult , Biomechanical Phenomena , Humans , Locomotion/physiology , Male , Task Performance and Analysis , Young Adult
18.
Eur J Sport Sci ; 15(2): 118-24, 2015.
Article in English | MEDLINE | ID: mdl-24963548

ABSTRACT

This study investigated lower-limb kinematics to explain the techniques used to achieve high levels of sprint start performance. A cross-sectional design was used to examine relationships between specific technique variables and horizontal external power production during the block phase. Video data were collected (200 Hz) at the training sessions of 16 sprinters who ranged in 100 m personal best times from 9.98 to 11.6 s. Each sprinter performed three 30 m sprints and reliable (all intraclass correlation coefficients, ICC(2,3) ≥ 0.89) lower-limb kinematic data were obtained through manual digitising. The front leg joints extended in a proximal-to-distal pattern for 15 sprinters, and a moderate positive relationship existed between peak front hip angular velocity and block power (r = 0.49, 90% confidence limits = 0.08-0.76). In the rear leg, there was a high positive relationship between relative push duration and block power (r = 0.53, 90% confidence limits = 0.13-0.78). The rear hip appeared to be important; rear hip angle at block exit was highly related to block power (r = 0.60, 90% confidence limits = 0.23-0.82), and there were moderate positive relationships with block power for its range of motion and peak angular velocity (both r = 0.49, 90% confidence limits = 0.08-0.76). As increased block power production was not associated with any negative aspects of technique in the subsequent stance phase, sprinters should be encouraged to maximise extension at both hips during the block phase.


Subject(s)
Athletic Performance , Hip , Lower Extremity , Range of Motion, Articular , Running , Acceleration , Adolescent , Adult , Biomechanical Phenomena , Cross-Sectional Studies , Humans , Knee Joint , Male , Physical Exertion , Task Performance and Analysis , Young Adult
19.
J Sports Sci ; 32(8): 738-46, 2014.
Article in English | MEDLINE | ID: mdl-24359568

ABSTRACT

This study analysed the first stance phase joint kinetics of three elite sprinters to improve the understanding of technique and investigate how individual differences in technique could influence the resulting levels of performance. Force (1000 Hz) and video (200 Hz) data were collected and resultant moments, power and work at the stance leg metatarsal-phalangeal (MTP), ankle, knee and hip joints were calculated. The MTP and ankle joints both exhibited resultant plantarflexor moments throughout stance. Whilst the ankle joint generated up to four times more energy than it absorbed, the MTP joint was primarily an energy absorber. Knee extensor resultant moments and power were produced throughout the majority of stance, and the best-performing sprinter generated double and four times the amount of knee joint energy compared to the other two sprinters. The hip joint extended throughout stance. Positive hip extensor energy was generated during early stance before energy was absorbed at the hip as the resultant moment became flexor-dominant towards toe-off. The generation of energy at the ankle appears to be of greater importance than in later phases of a sprint, whilst knee joint energy generation may be vital for early acceleration and is potentially facilitated by favourable kinematics at touchdown.


Subject(s)
Ankle Joint/physiology , Hip Joint/physiology , Knee Joint/physiology , Metatarsophalangeal Joint/physiology , Running/physiology , Adult , Biomechanical Phenomena , Female , Humans , Kinetics , Male , Muscle Strength/physiology , Young Adult
20.
Gait Posture ; 38(4): 653-7, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23540768

ABSTRACT

Inverse dynamics analyses are commonly used to understand movement patterns in all forms of gait. The aim of this study was to determine the effect of digital filtering procedures on the knee joint moments calculated during sprinting as an example of the possible influence of data analysis processes on interpretation of movement patterns. Data were obtained from three highly trained sprinters who completed a series of 30 m sprints. Ten different combinations of cut-off frequency were applied to the two-dimensional kinematic and kinetic input data with the kinetic cut-off frequency set equal to or higher than the kinematic cut-off frequency. When using the commonly adopted practice of filtering the kinetic data with a higher cut-off frequency than the kinematic data, exaggerated fluctuations in the knee joint moment existed soon after contact. In extreme cases, the knee moved between flexor, extensor and flexor dominance in less than 33 ms and through ranges exceeding 500 Nm. During an inverse dynamics analysis of locomotion, mismatched cut-off frequencies will likely affect the calculated joint moments if the cut-off frequency applied to the kinematic data is less than the true frequency content, particularly during impact phases. In the example of sprinting, exaggerated fluctuations in the knee joint moment appear to be data processing artefact rather than genuine characteristics of the joint kinetics. When the cut-off frequencies, and thus the frequency content of all input data, are matched, the fluctuations after contact are minimal and such a procedure is suggested for inverse dynamics analyses of gait.


Subject(s)
Gait/physiology , Knee Joint/physiology , Running/physiology , Statistics as Topic/methods , Adult , Biomechanical Phenomena , Female , Humans , Kinetics , Male , Models, Biological , Task Performance and Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL