Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(40): 15094-15101, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37732836

ABSTRACT

We describe an apparatus for the cryogenic landing of particles from the ion beam of a mass spectrometer onto transmission electron microscope grids for cryo-electron microscopy. This system also allows for the controlled formation of thin films of amorphous ice on the grid surface. We demonstrate that as compared to room temperature landings, the use of this cryogenic landing device greatly improves the structural preservation of deposited protein-protein complexes. Furthermore, landing under cryogenic conditions can increase the diversity of particle orientations, allowing for improved 3D structural interpretation. We conclude that this approach allows for the direct coupling of mass spectrometry with cryo-electron microscopy.


Subject(s)
Cryoelectron Microscopy , Cryoelectron Microscopy/methods , Mass Spectrometry
2.
Curr Opin Struct Biol ; 83: 102699, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37703606

ABSTRACT

Structure determination by single-particle cryoEM has matured into a core structural biology technique. Despite many methodological advancements, most cryoEM grids are still prepared using the plunge-freezing method developed ∼40 years ago. Embedding samples in thin films and exposing them to the air-water interface often leads to sample damage and preferential orientation of the particles. Using native mass spectrometry to create cryoEM samples, potentially avoids these problems and allows the use of mass spectrometry sample isolation techniques during EM grid creation. We review the recent publications that have demonstrated protein complexes can be ionized, flown through the mass spectrometer, gently landed onto EM grids, imaged, and reconstructed in 3D. Although many uncertainties and challenges remain, the combination of cryoEM and MS has great potential.


Subject(s)
Water , Cryoelectron Microscopy/methods , Water/chemistry , Mass Spectrometry
4.
bioRxiv ; 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37502880

ABSTRACT

We describe an apparatus for the cryogenic landing of particles from the ion beam of a mass spectrometer onto transmission electron microscope grids for cryo-electron microscopy. This system also allows for the controlled formation of thin films of amorphous ice on the grid surface. We demonstrate that as compared to room temperature landings, use of this cryogenic landing device greatly improves the structural preservation of deposited protein-protein complexes. Further, landing under cryogenic conditions can increase the diversity of particle orientations, allowing for improved 3D structural interpretation. Finally, we conclude that this approach allows for the direct coupling of mass spectrometry with cryo-electron microscopy.

5.
J Proteome Res ; 22(3): 851-856, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36608276

ABSTRACT

Addressing mixtures and heterogeneity in structural biology requires approaches that can differentiate and separate structures based on mass and conformation. Mass spectrometry (MS) provides tools for measuring and isolating gas-phase ions. The development of native MS including electrospray ionization allowed for manipulation and analysis of intact noncovalent biomolecules as ions in the gas phase, leading to detailed measurements of structural heterogeneity. Conversely, transmission electron microscopy (TEM) generates detailed images of biomolecular complexes that show an overall structure. Our matrix-landing approach uses native MS to probe and select biomolecular ions of interest for subsequent TEM imaging, thus unifying information on mass, stoichiometry, heterogeneity, etc., available via native MS with TEM images. Here, we prepare TEM grids of protein complexes purified via quadrupolar isolation and matrix-landing and generate 3D reconstructions of the isolated complexes. Our results show that these complexes maintain their structure through gas-phase isolation.


Subject(s)
Imaging, Three-Dimensional , Spectrometry, Mass, Electrospray Ionization , Mass Spectrometry/methods , Ions/chemistry , Spectrometry, Mass, Electrospray Ionization/methods
6.
Anal Chem ; 94(50): 17616-17624, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36475605

ABSTRACT

Recently, we described the use of a chemical matrix for landing and preserving the cations of protein-protein complexes within a mass spectrometer (MS) instrument. By use of a glycerol-landing matrix, we used negative stain transmission electron microscopy (TEM) to obtain a three-dimensional (3D) reconstruction of landed GroEL complexes. Here, we investigate the utilities of other chemical matrices for their abilities to land, preserve, and allow for direct imaging of these cationic particles using TEM. We report here that poly(propylene) glycol (PPG) offers superior performance over glycerol for matrix landing. We demonstrated the utility of the PPG matrix landing using three protein-protein complexes─GroEL, the 20S proteasome core particle, and ß-galactosidase─and obtained a 3D reconstruction of each complex from matrix-landed particles. These structures have no detectable differences from the structures obtained using conventional preparation methods, suggesting the structures are well preserved at least to the resolution limit of the reconstructions (∼20 Å). We conclude that matrix landing offers a direct approach to couple native MS with TEM for protein structure determination.


Subject(s)
Glycerol , Proteins , Microscopy, Electron , Mass Spectrometry , Proteins/analysis
7.
Nature ; 606(7913): 382-388, 2022 06.
Article in English | MEDLINE | ID: mdl-35614220

ABSTRACT

Mitochondria are epicentres of eukaryotic metabolism and bioenergetics. Pioneering efforts in recent decades have established the core protein componentry of these organelles1 and have linked their dysfunction to more than 150 distinct disorders2,3. Still, hundreds of mitochondrial proteins lack clear functions4, and the underlying genetic basis for approximately 40% of mitochondrial disorders remains unresolved5. Here, to establish a more complete functional compendium of human mitochondrial proteins, we profiled more than 200 CRISPR-mediated HAP1 cell knockout lines using mass spectrometry-based multiomics analyses. This effort generated approximately 8.3 million distinct biomolecule measurements, providing a deep survey of the cellular responses to mitochondrial perturbations and laying a foundation for mechanistic investigations into protein function. Guided by these data, we discovered that PIGY upstream open reading frame (PYURF) is an S-adenosylmethionine-dependent methyltransferase chaperone that supports both complex I assembly and coenzyme Q biosynthesis and is disrupted in a previously unresolved multisystemic mitochondrial disorder. We further linked the putative zinc transporter SLC30A9 to mitochondrial ribosomes and OxPhos integrity and established RAB5IF as the second gene harbouring pathogenic variants that cause cerebrofaciothoracic dysplasia. Our data, which can be explored through the interactive online MITOMICS.app resource, suggest biological roles for many other orphan mitochondrial proteins that still lack robust functional characterization and define a rich cell signature of mitochondrial dysfunction that can support the genetic diagnosis of mitochondrial diseases.


Subject(s)
Mitochondria , Mitochondrial Proteins , Cation Transport Proteins , Cell Cycle Proteins , Energy Metabolism , Humans , Mass Spectrometry , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Transcription Factors , rab5 GTP-Binding Proteins
8.
Nat Commun ; 13(1): 2276, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35478194

ABSTRACT

Native mass spectrometry (MS) is increasingly used to provide complementary data to electron microscopy (EM) for protein structure characterization. Beyond the ability to provide mass measurements of gas-phase biomolecular ions, MS instruments offer the ability to purify, select, and precisely control the spatial location of these ions. Here we present a modified Orbitrap MS system capable of depositing a native MS ion beam onto EM grids. We further describe the use of a chemical landing matrix that preserves the structural integrity of the deposited particles. With this system we obtain a three-dimensional reconstruction of the 800 kDa protein complex GroEL from gas-phase deposited GroEL ions. These data provide direct evidence that non-covalent protein complexes can indeed retain their condensed-phase structures following ionization and vaporization. Finally, we describe how further developments of this technology could pave the way to an integrated MS-EM technology with promise to provide improved cryo-EM sample preparation over conventional plunge-freezing techniques.


Subject(s)
Proteins , Specimen Handling , Cryoelectron Microscopy/methods , Ions , Mass Spectrometry/methods , Specimen Handling/methods
9.
Org Biomol Chem ; 19(35): 7641-7654, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34524323

ABSTRACT

Selective binding and transport of highly hydrophilic anions is ubiquitous in nature, as anion binding proteins can differentiate between similar anions with over a million-fold efficiency. While comparable selectivity has occasionally been achieved for certain anions using small, artificial receptors, the selective binding of certain anions, such as sulfate in the presence of carbonate, remains a very challenging task. Nanojars of the formula [anion⊂{Cu(OH)(pz)}n]2- (pz = pyrazolate; n = 27-33) are totally selective for either CO32- or SO42- over anions such as NO3-, ClO4-, BF4-, Cl-, Br- and I-, but cannot differentiate between the two. We hypothesized that rigidification of the nanojar outer shell by tethering pairs of pyrazole moieties together will restrict the possible orientations of the OH hydrogen-bond donor groups in the anion-binding cavity of nanojars, similarly to anion-binding proteins, and will lead to selectivity. Indeed, by using either homoleptic or heteroleptic nanojars of the general formula [anion⊂Cun(OH)n(L2-L6)y(pz)n-2y]2- (n = 26-31) based on a series of homologous ligands HpzCH2(CH2)xCH2pzH (x = 0-4; H2L2-H2L6), selectivity for carbonate (with L2 and with L4-L6/pz mixtures) or for sulfate (with L3) has been achieved. The synthesis of new ligands H2L3, H2L4 and H2L5, X-ray crystal structures of H2L4 and the tetrahydropyranyl-protected derivatives (THP)2L4 and (THP)2L5, synthesis and characterization by electrospray-ionization mass spectrometry (ESI-MS) of carbonate- and sulfate-nanojars derived from ligands H2L2-H2L6, as well as detailed selectivity studies for CO32-vs. SO42- using these novel nanojars are presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...