Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters











Publication year range
1.
Sci Rep ; 7(1): 17997, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29269845

ABSTRACT

We have assessed the stabilizing role that induced co-deposition has in the growth of nanostructured NiW alloy films by electrodeposition on polished steel substrates, under pulsed galvanostatic conditions. We have compared the kinetic roughening properties of NiW films with those of Ni films deposited under the same conditions, as assessed by Atomic Force Microscopy. The surface morphologies of both systems are super-rough at short times, but differ at long times: while a cauliflower-like structure dominates for Ni, the surfaces of NiW films display a nodular morphology consistent with more stable, conformal growth, whose height fluctuations are in the Kardar-Parisi-Zhang universality class of rough two-dimensional interfaces. These differences are explained by the mechanisms controlling surface growth in each case: mass transport through the electrolyte (Ni) and attachment of the incoming species to the growing interface (NiW). Thus, the long-time conformal growth regime is characteristic of electrochemical induced co-deposition under current conditions in which surface kinetics is hindered due to a complex reaction mechanism. These results agree with a theoretical model of surface growth in diffusion-limited systems, in which the key parameter is the relative importance of mass transport with respect to the kinetics of the attachment reaction.

2.
Langmuir ; 33(27): 6785-6793, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28625050

ABSTRACT

We have studied the products of the controversial synthesis of HAuCl4 with Na2S, which include gold nanostructures (Au NSs) that absorb in the near-infrared (NIR) region and are highly promising for photothermal therapies and other nanomedical applications. From high-resolution transmission electron microscopy, X-ray absorption spectroscopy, and small-angle X-ray scattering, we have found that only metallic Au NSs are formed as a result of this synthesis, with no detectable amount of gold sulfide or other oxidized gold species that could account for the NIR absorption. Different sulfur species are adsorbed on the Au NSs, mainly sulfides (monomeric sulfur) and polysulfides, similar to what is found on the planar gold surfaces, therefore precluding the idea that thiosulfate or other oxidized species are the actual reducing agents for Au(III) ions. The presence of strongly adsorbed S species, which are difficult to remove from the gold surface, is of great importance for their applications as regards toxicity and use of postfunctionalization strategies to anchor biomolecules and/or to increase circulation time after administration.

3.
Phys Chem Chem Phys ; 18(3): 1953-60, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26685776

ABSTRACT

Gold nanoparticle electrodeposition on a modified HOPG surface with a monolayer organic film based on aryl diazonium chemistry has been studied. This organic monolayer is electrochemically grown with the use of 2,2-diphenyl-1-picrylhydrazyl (DPPH), a radical scavenger. The electrodeposition of gold on this modified surface is highly favored resulting in an AuNP surface density comparable to that found on glassy carbon. AuNPs grow only in the areas covered by the organic monolayer leaving free clean HOPG zones. A progressive mechanism for the nucleation and growth is followed giving hemispherical AuNPs, homogeneously distributed on the surface and their sizes can be well controlled by the applied electrodeposition potential. By using AFM, C-AFM and electrochemical measurements with the aid of two redox probes, namely Fe(CN)6(4-)/Fe(CN)6(3-) and dopamine, relevant results about the electrochemical modified surface as well as the gold nanoparticles electrodeposited on them are obtained.

4.
Nanoscale ; 7(41): 17563-72, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26446736

ABSTRACT

Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract infection, an important protein participating in the adhesion process is a 220 kDa adhesin named filamentous haemagglutinin (FHA), an outer membrane and also secreted protein that contains recognition domains to adhere to ciliated respiratory epithelial cells and macrophages. In this work, we obtained information on the cell-surface localization and distribution of the B. pertussis adhesin FHA using an antibody-functionalized AFM tip. Through the analysis of specific molecular recognition events we built a map of the spatial distribution of the adhesin which revealed a non-homogeneous pattern. Moreover, our experiments showed a force induced reorganization of the adhesin on the surface of the cells, which could explain a reinforced adhesive response under external forces. This single-molecule information contributes to the understanding of basic molecular mechanisms used by bacterial pathogens to cause infectious disease and to gain insights into the structural features by which adhesins can act as force sensors under mechanical shear conditions.


Subject(s)
Adhesins, Bacterial/metabolism , Antibodies, Bacterial/chemistry , Bordetella pertussis/metabolism , Bordetella pertussis/ultrastructure , Microscopy, Atomic Force , Virulence Factors, Bordetella/metabolism , Humans
5.
Phys Chem Chem Phys ; 17(21): 14201-7, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25959866

ABSTRACT

Ni-W nanostructured coatings electrodeposited on steel by galvanostatic pulses were functionalized by tetraethoxysilane (TEOS) and octadecyltrichlorosilane (OTS) in a two-step procedure. A silica-rich layer is formed by the reaction of TEOS with the metal coating surface oxides, which allows a further reaction with OTS forming a hydrocarbon-silica outer network. This mixed silane layer provides hydrophobicity and improves the corrosion behavior of the Ni-W surface coatings without modifying their excellent mechanical properties.

6.
Phys Chem Chem Phys ; 16(35): 19017-23, 2014 Sep 21.
Article in English | MEDLINE | ID: mdl-25093279

ABSTRACT

Self-assembled monolayers of thiols on Au(111) have attracted considerable interest from the theoretical and experimental points of view as model systems for understanding the organization of molecules on metallic surfaces, and also as key elements in nanoscience and nanotechnology. Today, there is strong theoretical and experimental evidence indicating that the surface chemistry of these monolayers at high coverage involves dithiolate-adatom (RS-Auad-SR) species, showing the existence of the (3 × 4) and c(4 × 2) lattices usually observed by scanning tunneling microscopy. However, concealing the existence of dithiolate-Au adatom species with the presence of the paradigmatic (√3 × âˆš3)R30° lattice, which dominates the structure of long alkanethiols, still remains a challenge. Here, we propose a novel (3√3 × 3√3)R30° structural model containing RS-Auad-SR moieties based on DFT calculations which reconciles most of the experimental data observed for the (√3 × âˆš3)R30° lattice. Our results provide a unified picture of the surface chemistry of the thiol-Au(111) system.

7.
Langmuir ; 28(17): 6839-47, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22497438

ABSTRACT

The adsorption of 4-mercaptopyridine on Au(111) from aqueous or ethanolic solutions is studied by different surface characterization techniques and density functional theory calculations (DFT) including van der Waals interactions. X-ray photoelectron spectroscopy and electrochemical data indicate that self-assembly from 4-mercaptopyridine-containing aqueous 0.1 M NaOH solutions for short immersion times (few minutes) results in a 4-mercaptopyridine (PyS) self-assembled monolayer (SAM) with surface coverage 0.2. Scanning tunneling microscopy images show an island-covered Au surface. The increase in the immersion time from minutes to hours results in a complete SAM degradation yielding adsorbed sulfur and a heavily pitted Au surface. Adsorbed sulfur is also the main product when the self-assembly process is made in ethanolic solutions irrespective of the immersion time. We demonstrate for the first time that a surface reaction is involved in PyS SAM decomposition in ethanol, a surface process not favored in water. DFT calculations suggest that the surface reaction takes place via disulfide formation driven by the higher stability of the S-Au(111) system. Other reactions that contribute to sulfidization are also detected and discussed.

8.
Langmuir ; 28(19): 7461-9, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22515332

ABSTRACT

Adherence to a biological surface allows bacteria to colonize and persist within the host and represents an essential first step in the pathogenesis of most bacterial diseases. Consequently, the physicochemical properties of the outer membrane in bacteria play a key role for attachment to surfaces and therefore for biofilm formation. Bordetella pertussis is a Gram-negative bacterium that colonizes the respiratory tract of humans, producing whooping cough or pertussis, a highly infectious disease. B. pertussis uses various adhesins exposed on its surface to promote cell-surface and cell-cell interactions. The most dominant adhesin function is displayed by filamentous hemagglutinin (FHA). B. pertussis Tohama I wild-type (Vir+) strain and two defective mutants, an avirulent (Vir-) and a FHA-deficient (FHA-) B. pertussis strains were studied by AFM under physiological conditions to evaluate how the presence or absence of adhesins affects the mechanical properties of the B. pertussis cell surface. Quantitative information on the nanomechanical properties of the bacterial envelope was obtained by AFM force-volume analysis. These studies suggested that the presence of virulence factors is correlated with an increase in the average membrane rigidity, which is largely influenced by the presence of FHA. Moreover, for this system we built a nanoscale stiffness map that reveals an inhomogeneous spatial distribution of Young modulus as well as the presence of rigid nanodomains on the cell surface.


Subject(s)
Adhesins, Bacterial/metabolism , Biomechanical Phenomena/physiology , Bordetella pertussis/metabolism , Virulence/physiology
9.
J Phys Chem Lett ; 3(16): 2159-63, 2012 Aug 16.
Article in English | MEDLINE | ID: mdl-26295764

ABSTRACT

Periodic density functional calculations probe that step edges play a key role as source of defects during self-assembly. It is shown that the self-assembly process strongly reduces the energy required to strip an atom from the gold surface, locally increasing the concentration of surface defects. The thermodynamic driving force for the atom stripping is considerably more favorable along step-edge lines within the self-assembly than on the higher-coordinated terrace sites. Furthermore, the clustering of surface defects is considered, and we probe that the formation of aggregates of vacancies in the form of vacancy pits significantly stabilizes the self-assembly on the terraces of gold, where the role of the step edges is expected to be less significant. The high stability of pit-like structures arises from a balance between the corrugation and the enhanced bonding of defect-rich substrates. Our results demonstrate the important role that step edges play during assembly and could be very valuable for discovering defect-free assembled structures.

10.
Nanoscale ; 3(4): 1708-16, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21321759

ABSTRACT

Reductive electrodesorption has been used to produce "naked" gold nanoparticles (AuNPs) 3 nm in size on HOPG from different thiolate-capped AuNPs. The clean AuNPs transform the electrocatalytic inert HOPG into an active surface for hydrogen peroxide electroreduction, causing a lowering of the cathodic overpotential of 0.25 V with respect to the Au(111) surface. Compared to the plain gold substrates, the nanostructures promote only a slight increase in the hydrogen evolution reaction. In a second modification step a ∼1 nm thick melanin-iron coating is electrochemically formed around the AuNPs. This ultrathin melanin-iron coating largely improves the catalytic activity of the bare AuNPs for both hydrogen peroxide electroreduction and hydrogen evolution reaction. This strategy, which integrates electrochemistry and nanotechnology, can be applied to the preparation of efficient "naked" AuNPs and organic-iron capped AuNPs catalysts.


Subject(s)
Gold/chemistry , Graphite/chemistry , Melanins/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Catalysis , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
11.
Colloids Surf B Biointerfaces ; 82(2): 536-42, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21115280

ABSTRACT

Biofilm development involves several stages and flagellar expression of bacteria is considered an important factor in this process. However, its role in the earliest stage of biofilm development is not yet clear. In order to analyse this topic, Pseudomonas fluorescens samples were trapped on a patterned gold surface with sub-microtrenches (ST) so as to hinder their motility, and nanostructured gold with random orientation (SR) was used as control substrate. Atomic force microscopic (AFM) observations were made on untreated samples. Initially, ca. 75% of the flagella on ST and 85% of flagella on SR are oriented towards the neighbouring bacteria. Some of them made contact and surrounded the cells. Subsequently, 2-D raft structures formed on SR inert substrates with lateral curly flagella, while those at the poles of the rafts turned towards the nearest cell group. A few flagella and the formation of 3-D bacterial structures were observed on toxic substrates like copper. Results showed that patterned substrates are suitable tools to detect the orientation of flagella in the earliest stage of biofilm formation on solid opaque surfaces avoiding sample pre-treatment.


Subject(s)
Bacterial Adhesion , Biofilms , Flagella/metabolism , Microscopy, Atomic Force/methods , Pseudomonas fluorescens/metabolism , Bacterial Proteins/metabolism , Copper/chemistry , Culture Media/chemistry , Electrochemistry/methods , Gold/chemistry , Imaging, Three-Dimensional , Surface Properties , Temperature
12.
Langmuir ; 26(22): 17068-74, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-20949962

ABSTRACT

A multitechnique study of 6-mercaptopurine (6MP) adsorption on Au(111) is presented. The molecule adsorbs on Au(111), originating short-range ordered domains and irregular nanosized aggregates with a total surface coverage by chemisorbed species smaller than those found for alkanethiol SAMs, as derived from scanning tunneling microscopy (STM) and electrochemical results. X-ray photoelectron spectroscopy (XPS) results show the presence of a thiolate bond, whereas density functional theory (DFT) data indicate strong chemisorption via a S-Au bond and additional binding to the surface via a N-Au bond. From DFT data, the positive charge on the Au topmost surface atoms is markedly smaller than that found for Au atoms in alkanethiolate SAMs. The adsorption of 6MP originates Au atom removal from step edges but no vacancy island formation at (111) terraces. The small coverage of Au islands after 6MP desorption strongly suggests the presence of only a small population of Au adatom-thiolate complexes. We propose that the absence of the Au-S interface reconstruction results from the lack of significant repulsive forces acting at the Au surface atoms.

13.
J Colloid Interface Sci ; 350(2): 402-8, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20656295

ABSTRACT

Titanium is a corrosion-resistant and biocompatible material widely used in medical and dental implants. Titanium surfaces, however, are prone to bacterial colonization that could lead to infection, inflammation, and finally to implant failure. Silver nanoparticles (AgNPs) have demonstrated an excellent performance as biocides, and thus their integration to titanium surfaces is an attractive strategy to decrease the risk of implant failure. In this work a simple and efficient method is described to modify Ti/TiO(2) surfaces with citrate-capped AgNPs. These nanoparticles spontaneously adsorb on Ti/TiO(2), forming nanometer-sized aggregates consisting of individual AgNPs that homogeneously cover the surface. The modified AgNP-Ti/TiO(2) surface exhibits a good resistance to colonization by Pseudomonas aeruginosa, a model system for biofilm formation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Citric Acid/chemistry , Nanoparticles/chemistry , Pseudomonas aeruginosa/drug effects , Silver/chemistry , Titanium/chemistry , Adsorption , Anti-Bacterial Agents/chemistry , Citric Acid/pharmacology , Microscopy, Atomic Force , Silver/pharmacology , Surface Properties , Titanium/pharmacology
14.
Chem Soc Rev ; 39(5): 1805-34, 2010 May.
Article in English | MEDLINE | ID: mdl-20419220

ABSTRACT

Self-assembled monolayers (SAMs) of alkanethiols and dialkanethiols on gold are key elements for building many systems and devices with applications in the wide field of nanotechnology. Despite the progress made in the knowledge of these fascinating two-dimensional molecular systems, there are still several "hot topics" that deserve special attention in order to understand and to control their physical and chemistry properties at the molecular level. This critical review focuses on some of these topics, including the nature of the molecule-gold interface, whose chemistry and structure remain elusive, the self-assembly process on planar and irregular surfaces, and on nanometre-sized objects, and the chemical reactivity and thermal stability of these systems in ambient and aqueous solutions, an issue which seriously limits their technological applications (375 references).

15.
Langmuir ; 26(12): 9589-95, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20397655

ABSTRACT

A comparative study on the thermodynamic stability of the lying down (LD) and standing up (SU) phases of alpha,omega-butanedithiol (BDT) on unreconstructed (U) and on reconstructed (R) Au(111) surfaces is presented. The R surface is made of dithiol-Au adatom units. Density functional calculations (DFT) allow the estimation of the adsorption energy of the LD and SU BDT phases on both substrates. Surface free energies based on the DFT calculations show the coverage of the clean Au(111) surface by the LD phase, and the LD to SU phase transition as the chemical potential of the BDT molecule is increased. The LD and SU phases are more stable on R than on U substrates, suggesting that the Au(111) surface should reconstruct upon BDT adsorption. The stability analysis is extended to longer alpha,omega-dithiols. Results reveal that the LD to SU phase transition is favored as the hydrocarbon chain length of the dithiol molecule is increased. Changes in the hydrogen pressure affect the formation of the LD phase, while they have only minor effects on the LD to SU phase transitions. Our calculations explain the influence of the number of carbon atoms in the hydrocarbon chains, hydrogen pressure and dithiol pressure (or concentration) on dithiol adsorption, and phase transitions. This information is relevant to control the coverage, reactivity, and surface chemistry of the alpha,omega-dithiol self-assembled monolayers on Au surfaces.

16.
Langmuir ; 23(22): 11206-10, 2007 Oct 23.
Article in English | MEDLINE | ID: mdl-17880247

ABSTRACT

The adhesion of Pseudomonas fluorescens was studied on nano/microengineered surfaces. Results show that these bacteria formed well-defined aggregates on randomly oriented nanosized granular gold substrates. These aggregates consist of aligned ensembles of bacteria, with some of them strongly elongated. This kind of biological structure was not found on ordered engineered surfaces because bacterial alignment and cell-to-cell sticking were hindered. Importantly, differences in cell morphology, length, orientation, and flagellation were observed between bacteria attached on the ordered nano/microstructures and the randomly ordered surfaces. The implications of the results are related to the design of engineered surfaces to enhance (nanostructured filters) or inhibit (medical implants and industrial biofouling) bacterial colonization on the surfaces and to the biocontrol of soil ecosystems.


Subject(s)
Biofilms/growth & development , Bacterial Adhesion/physiology , Gold , Microscopy, Atomic Force , Nanotechnology , Pseudomonas fluorescens/physiology , Surface Properties
17.
Langmuir ; 23(3): 1152-9, 2007 Jan 30.
Article in English | MEDLINE | ID: mdl-17241026

ABSTRACT

We have studied the self-assembly of thiol monolayers on high-area nanostructured gold surfaces. These surfaces are highly irregular with a fractal dimension close to 2.5. Auger electron spectroscopy and voltammetric data indicate that thiol self-assembly with a maximum surface coverage approximately 1/3 takes place, the same result as that found for smooth gold surfaces. Therefore, neither curvature effects, which would promote higher coverage, nor excluded volume effects, which would result in lower coverage, are present in these irregular surfaces. The high surface area of the bare electrodes exhibits a rapid surface decay in different liquid media that is hindered by alkanethiolate chemisorption. The presence of thiolate SAMs reduces markedly the mass transport surface diffusion of gold adatoms, hindering surface area decay and freezing the system in a metastable state for days. This effect cannot be explained by considering only hydrocarbon-hydrocarbon chain interactions, because it is also observed for ordered arrays of adsorbed S atoms. Therefore, interactions between ordered chemisorbed species at high coverage seem to be responsible for the observed behavior. The thiol-covered high-area metallic substrates can be used to efficiently anchor a large number of molecules, biomolecules, or nanostructures, improving the performance of SAM-based optical and electrochemical devices.

18.
Phys Rev Lett ; 97(22): 226103, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-17155817

ABSTRACT

The atomic structure and thermodynamic stability of Ag(111)(sqrt[7]xsqrt[7])-R19.1 degrees -CH3S has been studied by means of density functional calculations and atomistic first principles thermodynamics. The unreconstructed model and two recently proposed reconstructions have been considered. It is found that, in spite of significant differences in the atomic structure, the different surface models have a very similar surface free energy. It is claimed that the different ordered phases can coexist and that the appearance of one or another depends on the external preparation conditions.

19.
Nanotechnology ; 17(14): 3428-35, 2006 Jul 28.
Article in English | MEDLINE | ID: mdl-19661586

ABSTRACT

Silver nanodots and nanoripples have been grown on nanocavity-patterned polycrystalline Au templates by controlled electrodeposition. The initial step is the growth of a first continuous Ag monolayer followed by preferential deposition at nanocavities. The Ag-coated nanocavities act as preferred sites for instantaneous nucleation and growth of the three-dimensional metallic centres. By controlling the amount of deposited Ag, dots of approximately 50 nm average size and approximately 4 nm average height can be grown with spatial and size distributions dictated by the template. The dots are in a metastable state. Further Ag deposition drives the dot surface structure to nanoripple formation. Results show that electrodeposition on nanopatterned electrodes can be used to prepare a high density of nanostructures with a narrow size distribution and spatial order.

20.
Phys Chem Chem Phys ; 7(18): 3258-68, 2005 Sep 21.
Article in English | MEDLINE | ID: mdl-16240039

ABSTRACT

The surface structures, defects and dynamics of self-assembled monolayers (SAMs) on Au(111) are reviewed. In the case of the well-known c(4 x 2) and radical 3 x radical 3 R30 degrees surface structures, the present discussion is centered on the determination of the adsorption sites. A more complex scenario emerges for the striped phases, where a variety of surface structures that depends on surface coverage are described. Recently reported surface structures at non-saturation coverage show the richness of the self-assembly process. The study of surface dynamics sheds light on the relative stability of some of these surface structures. Typical defects at the alkanethiol monolayer are shown and discussed in relation to SAMs applications.


Subject(s)
Gold/chemistry , Organic Chemicals/chemistry , Sulfhydryl Compounds/chemistry , Nanotechnology , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL