Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Ichthyol Res ; 70(3): 378-385, 2023.
Article in English | MEDLINE | ID: mdl-37384314

ABSTRACT

Cichlid fishes are an important model system in evolutionary biology, primarily because of their exceptional diversity. However, while some cichlid assemblages, such as the ones of the African Great Lakes, have received considerable attention, others are not well studied, including many riverine species. Here, we focus on the Australoheros autrani species group and first report a new record of Australoheros in the upper Paranaíba River drainage, extending the known distribution range of this genus. Through Bayesian inference and maximum likelihood phylogenetic analyses of the mitochondrial cytochrome b gene of these specimens as well as available sequences, we assigned the newly discovered population to Australoheros barbosae. We corroborate the monophyly of the A. autrani species group and the presence of three species in the upper/middle Paraíba do Sul River basin as well as molecular diagnostic characters for each. Finally, we provide evidence for a recent expansion of A. barbosae. Supplementary Information: The online version contains supplementary material available at 10.1007/s10228-022-00888-9.

2.
BMC Evol Biol ; 19(1): 13, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30630407

ABSTRACT

BACKGROUND: The impressive adaptive radiation of notothenioid fishes in Antarctic waters is generally thought to have been facilitated by an evolutionary key innovation, antifreeze glycoproteins, permitting the rapid evolution of more than 120 species subsequent to the Antarctic glaciation. By way of contrast, the second-most species-rich notothenioid genus, Patagonotothen, which is nested within the Antarctic clade of Notothenioidei, is almost exclusively found in the non-Antarctic waters of Patagonia. While the drivers of the diversification of Patagonotothen are currently unknown, they are unlikely to be related to antifreeze glycoproteins, given that water temperatures in Patagonia are well above freezing point. Here we performed a phylogenetic analysis based on genome-wide single nucleotide polymorphisms (SNPs) derived from restriction site-associated DNA sequencing (RADseq) in a total of twelve Patagonotothen species. RESULTS: We present a well-supported, time-calibrated phylogenetic hypothesis including closely and distantly related outgroups, confirming the monophyly of the genus Patagonotothen with an origin approximately 3 million years ago and the paraphyly of both the sister genus Lepidonotothen and the family Notothenidae. Our phylogenomic and population genetic analyses highlight a previously unrecognized linage and provide evidence for shared genetic variation between some closely related species. We also provide a mitochondrial phylogeny showing mitonuclear discordance. CONCLUSIONS: Based on a combination of phylogenomic and population genomic approaches, we provide evidence for the existence of a new, potentially cryptic, Patagonotothen species, and demonstrate that genetic boundaries between some closely related species are diffuse, likely due to recent introgression and/or incomplete linage sorting. The detected mitonuclear discordance highlights the limitations of relying on a single locus for species barcoding. In addition, our time-calibrated phylogenetic hypothesis shows that the early burst of diversification roughly coincides with the onset of the intensification of Quaternary glacial cycles and that the rate of species accumulation may have been stepwise rather than constant. Our phylogenetic framework not only advances our understanding of the origin of a high-latitude marine radiation, but also provides the basis for the study of the ecology and life history of the genus Patagonotothen, as well as for their conservation and commercial management.


Subject(s)
Fishes/classification , Phylogeny , Animals , Antarctic Regions , Base Sequence , Calibration , Genetic Loci , Genetic Markers , Genetic Variation , Genome , Haplotypes/genetics , Likelihood Functions , Mitochondria/genetics , Phylogeography , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA , Species Specificity , Time Factors
3.
Syst Biol ; 67(4): 681-699, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29385552

ABSTRACT

The closure of the Isthmus of Panama has long been considered to be one of the best defined biogeographic calibration points for molecular divergence-time estimation. However, geological and biological evidence has recently cast doubt on the presumed timing of the initial isthmus closure around 3 Ma but has instead suggested the existence of temporary land bridges as early as the Middle or Late Miocene. The biological evidence supporting these earlier land bridges was based either on only few molecular markers or on concatenation of genome-wide sequence data, an approach that is known to result in potentially misleading branch lengths and divergence times, which could compromise the reliability of this evidence. To allow divergence-time estimation with genomic data using the more appropriate multispecies coalescent (MSC) model, we here develop a new method combining the single-nucleotide polymorphism-based Bayesian species-tree inference of the software SNAPP with a molecular clock model that can be calibrated with fossil or biogeographic constraints. We validate our approach with simulations and use our method to reanalyze genomic data of Neotropical army ants (Dorylinae) that previously supported divergence times of Central and South American populations before the isthmus closure around 3 Ma. Our reanalysis with the MSC model shifts all of these divergence times to ages younger than 3 Ma, suggesting that the older estimates supporting the earlier existence of temporary land bridges were artifacts resulting at least partially from the use of concatenation. We then apply our method to a new restriction-site associated DNA-sequencing data set of Neotropical sea catfishes (Ariidae) and calibrate their species tree with extensive information from the fossil record. We identify a series of divergences between groups of Caribbean and Pacific sea catfishes around 10 Ma, indicating that processes related to the emergence of the isthmus led to vicariant speciation already in the Late Miocene, millions of years before the final isthmus closure.


Subject(s)
Ants/classification , Catfishes/classification , Evolution, Molecular , Polymorphism, Single Nucleotide , Animals , Ants/genetics , Bayes Theorem , Caribbean Region , Catfishes/genetics , Pacific Ocean , Panama
4.
Mol Ecol ; 22(3): 670-84, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23050496

ABSTRACT

The evolution of convergent phenotypes is one of the most interesting outcomes of replicate adaptive radiations. Remarkable cases of convergence involve the thick-lipped phenotype found across cichlid species flocks in the East African Great Lakes. Unlike most other convergent forms in cichlids, which are restricted to East Africa, the thick-lipped phenotype also occurs elsewhere, for example in the Central American Midas Cichlid assemblage. Here, we use an ecological genomic approach to study the function, the evolution and the genetic basis of this phenotype in two independent cichlid adaptive radiations on two continents. We applied phylogenetic, demographic, geometric morphometric and stomach content analyses to an African (Lobochilotes labiatus) and a Central American (Amphilophus labiatus) thick-lipped species. We found that similar morphological adaptations occur in both thick-lipped species and that the 'fleshy' lips are associated with hard-shelled prey in the form of molluscs and invertebrates. We then used comparative Illumina RNA sequencing of thick vs. normal lip tissue in East African cichlids and identified a set of 141 candidate genes that appear to be involved in the morphogenesis of this trait. A more detailed analysis of six of these genes led to three strong candidates: Actb, Cldn7 and Copb. The function of these genes can be linked to the loose connective tissue constituting the fleshy lips. Similar trends in gene expression between African and Central American thick-lipped species appear to indicate that an overlapping set of genes was independently recruited to build this particular phenotype in both lineages.


Subject(s)
Biological Evolution , Cichlids/anatomy & histology , Cichlids/genetics , Adaptation, Biological/genetics , Africa, Eastern , Animals , Central America , Gastrointestinal Contents , Molecular Sequence Data , Phylogeny , Sequence Analysis, RNA , Transcriptome
5.
BMC Evol Biol ; 11: 116, 2011 Apr 30.
Article in English | MEDLINE | ID: mdl-21529367

ABSTRACT

BACKGROUND: Phenotypic evolution and its role in the diversification of organisms is a central topic in evolutionary biology. A neglected factor during the modern evolutionary synthesis, adaptive phenotypic plasticity, more recently attracted the attention of many evolutionary biologists and is now recognized as an important ingredient in both population persistence and diversification. The traits and directions in which an ancestral source population displays phenotypic plasticity might partly determine the trajectories in morphospace, which are accessible for an adaptive radiation, starting from the colonization of a novel environment. In the case of repeated colonizations of similar environments from the same source population this "flexible stem" hypothesis predicts similar phenotypes to arise in repeated subsequent radiations. The Midas Cichlid (Amphilophus spp.) in Nicaragua has radiated in parallel in several crater-lakes seeded by populations originating from the Nicaraguan Great Lakes. Here, we tested phenotypic plasticity in the pharyngeal jaw of Midas Cichlids. The pharyngeal jaw apparatus of cichlids, a second set of jaws functionally decoupled from the oral ones, is known to mediate ecological specialization and often differs strongly between sister-species. RESULTS: We performed a common garden experiment raising three groups of Midas cichlids on food differing in hardness and calcium content. Analyzing the lower pharyngeal jaw-bones we find significant differences between diet groups qualitatively resembling the differences found between specialized species. Observed differences in pharyngeal jaw expression between groups were attributable to the diet's mechanical resistance, whereas surplus calcium in the diet was not found to be of importance. CONCLUSIONS: The pharyngeal jaw apparatus of Midas Cichlids can be expressed plastically if stimulated mechanically during feeding. Since this trait is commonly differentiated--among other traits--between Midas Cichlid species, its plasticity might be an important factor in Midas Cichlid speciation. The prevalence of pharyngeal jaw differentiation across the Cichlidae further suggests that adaptive phenotypic plasticity in this trait could play an important role in cichlid speciation in general. We discuss several possibilities how the adaptive radiation of Midas Cichlids might have been influenced in this respect.


Subject(s)
Cichlids/anatomy & histology , Cichlids/genetics , Jaw/anatomy & histology , Animals , Body Weight , Calcium/metabolism , Cichlids/metabolism , Genetic Speciation , Jaw/metabolism , Nicaragua , Phenotype
6.
Nature ; 439(7077): 719-23, 2006 Feb 09.
Article in English | MEDLINE | ID: mdl-16467837

ABSTRACT

Sympatric speciation, the formation of species in the absence of geographical barriers, remains one of the most contentious concepts in evolutionary biology. Although speciation under sympatric conditions seems theoretically possible, empirical studies are scarce and only a few credible examples of sympatric speciation exist. Here we present a convincing case of sympatric speciation in the Midas cichlid species complex (Amphilophus sp.) in a young and small volcanic crater lake in Nicaragua. Our study includes phylogeographic, population-genetic (based on mitochondrial DNA, microsatellites and amplified fragment length polymorphisms), morphometric and ecological analyses. We find, first, that crater Lake Apoyo was seeded only once by the ancestral high-bodied benthic species Amphilophus citrinellus, the most common cichlid species in the area; second, that a new elongated limnetic species (Amphilophus zaliosus) evolved in Lake Apoyo from the ancestral species (A. citrinellus) within less than approximately 10,000 yr; third, that the two species in Lake Apoyo are reproductively isolated; and fourth, that the two species are eco-morphologically distinct.


Subject(s)
Fishes/classification , Fishes/physiology , Fresh Water , Genetic Speciation , Animals , Costa Rica , DNA, Mitochondrial/genetics , Diet , Fishes/genetics , Food Chain , Geography , Microsatellite Repeats/genetics , Nicaragua , Phylogeny , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL