Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(1): 1110-1117, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38150584

ABSTRACT

Lateral confinement of layered, two-dimensional (2D) materials has uniquely enabled the exploration of several topological phenomena in electron transport due to the well-defined nanoscale cross-sections and perimeters. At present, research on laterally confined 2D materials is constrained by the lack of synthesis methods that can reliably and controllably produce nanostructures with narrow widths and high aspect ratios. We demonstrate the use of thermomechanical nanomolding (TMNM) to fabricate nanowires of six layered materials (Te, In2Se3, Bi2Te3, Bi2Se3, GaSe, and Sb2Te3) with widths of 40 nm and aspect ratios above 100. During molding, the van der Waals (vdW) layers rotate by 90° from the horizontal direction in the bulk feedstock to the vertical direction in the molded nanowire, such that the layers are aligned along the nanowire length. We find that interfacial diffusion and surface energy minimization drive nanowire formation during TMNM, often resulting in single-crystalline nanowires with consistent crystallographic orientation.

2.
ACS Mater Au ; 3(5): 501-513, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-38089098

ABSTRACT

The thiospinel group of nickel cobalt sulfides (NixCo3-xS4) are promising materials for energy applications such as supercapacitors, fuel cells, and solar cells. Solution-processible nanoparticles of NixCo3-xS4 have advantages of low cost and fabrication of high-performance energy devices due to their high surface-to-volume ratio, which increases the electrochemically active surface area and shortens the ionic diffusion path. The current approaches to synthesize NixCo3-xS4 nanoparticles are often based on hydrothermal or solvothermal methods that are difficult to scale up safely and efficiently and that preclude monitoring the reaction through aliquots, making optimization of size and dispersity challenging, typically resulting in aggregated nanoparticles with polydisperse sizes. In this work, we report a scalable "heat-up" method to colloidally synthesize NixCo3-xS4 nanoparticles that are smaller than 15 nm in diameter with less than 15% in size dispersion, using two inexpensive, earth-abundant sulfur sources. Our method provides a reliable synthetic pathway to produce phase-pure, low-dispersity, gram-scale nanoparticles of ternary metal sulfides. This method enhances the current capabilities of NixCo3-xS4 nanoparticles to meet the performance demands to improve renewable energy technologies.

3.
Small ; : e2307289, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057127

ABSTRACT

With shrinking dimensions in integrated circuits, sensors, and functional devices, there is a pressing need to develop nanofabrication techniques with simultaneous control of morphology, microstructure, and material composition over wafer length scales. Current techniques are largely unable to meet all these conditions, suffering from poor control of morphology and defect structure or requiring extensive optimization or post-processing to achieve desired nanostructures. Recently, thermomechanical nanomolding (TMNM) has been shown to yield single-crystalline, high aspect ratio nanowires of metals, alloys, and intermetallics over wafer-scale distances. Here, TMNM is extended for wafer-scale fabrication of 2D nanostructures. Using In, Al, and Cu, nanomold nanoribbons with widths < 50 nm, depths ≈0.5-1 µm and lengths ≈7 mm into Si trenches at conditions compatible is successfully with back end of line processing . Through SEM cross-section imaging and 4D-STEM grain orientation maps, it is shown that the grain size of the bulk feedstock is transferred to the nanomolded structures up to and including single crystal Cu. Based on the retained microstructures of molded 2D Cu, the deformation mechanism during molding for 2D TMNM is discussed.

4.
J Am Chem Soc ; 145(14): 8218-8230, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36996286

ABSTRACT

The discovery of novel large band gap two-dimensional (2D) materials with good stability and high carrier mobility will innovate the next generation of electronics and optoelectronics. A new allotrope of 2D violet phosphorus P11 was synthesized via a salt flux method in the presence of bismuth. Millimeter-sized crystals of violet-P11 were collected after removing the salt flux with DI water. From single-crystal X-ray diffraction, the crystal structure of violet-P11 was determined to be in the monoclinic space group C2/c (no. 15) with unit cell parameters of a = 9.166(6) Å, b = 9.121(6) Å, c = 21.803(14)Å, ß = 97.638(17)°, and a unit cell volume of 1807(2) Å3. The structure differences between violet-P11, violet-P21, and fibrous-P21 are discussed. The violet-P11 crystals can be mechanically exfoliated down to a few layers (∼6 nm). Photoluminescence and Raman measurements reveal the thickness-dependent nature of violet-P11, and exfoliated violet-P11 flakes were stable in ambient air for at least 1 h, exhibiting moderate ambient stability. The bulk violet-P11 crystals exhibit excellent stability, being stable in ambient air for many days. The optical band gap of violet-P11 bulk crystals is 2.0(1) eV measured by UV-Vis and electron energy-loss spectroscopy measurements, in agreement with density functional theory calculations which predict that violet-P11 is a direct band gap semiconductor with band gaps of 1.8 and 1.9 eV for bulk and monolayer, respectively, and with a high carrier mobility. This band gap is the largest among the known single-element 2D layered bulk crystals and thus attractive for various optoelectronic devices.

5.
Adv Mater ; 35(13): e2208965, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36745845

ABSTRACT

The increasing resistance of copper (Cu) interconnects for decreasing dimensions is a major challenge in continued downscaling of integrated circuits beyond the 7 nm technology node as it leads to unacceptable signal delays and power consumption in computing. The resistivity of Cu increases due to electron scattering at surfaces and grain boundaries at the nanoscale. Topological semimetals, owing to their topologically protected surface states and suppressed electron backscattering, are promising candidates to potentially replace current Cu interconnects. Here, we report the unprecedented resistivity scaling of topological metal molybdenum phosphide (MoP) nanowires, and it is shown that the resistivity values are superior to those of nanoscale Cu interconnects <500 nm2 cross-section areas. The cohesive energy of MoP suggests better stability against electromigration, enabling a barrier-free design . MoP nanowires are more resistant to surface oxidation than the 20 nm thick Cu. The thermal conductivity of MoP is comparable to those of Ru and Co. Most importantly, it is demonstrated that the dimensional scaling of MoP, in terms of line resistance versus total cross-sectional area, is competitive to those of effective Cu with barrier/liner and barrier-less Ru, suggesting MoP is an attractive alternative for the scaling challenge of Cu interconnects.

6.
Nat Nanotechnol ; 18(2): 160-167, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36536043

ABSTRACT

Electrochemistry can provide an efficient and sustainable way to treat environmental waters polluted by chlorinated organic compounds. However, the electrochemical valorization of 1,2-dichloroethane (DCA) is currently challenged by the lack of a catalyst that can selectively convert DCA in aqueous solutions into ethylene. Here we report a catalyst comprising cobalt phthalocyanine molecules assembled on multiwalled carbon nanotubes that can electrochemically decompose aqueous DCA with high current and energy efficiencies. Ethylene is produced at high rates with unprecedented ~100% Faradaic efficiency across wide electrode potential and reactant concentration ranges. Kinetic studies and density functional theory calculations reveal that the rate-determining step is the first C-Cl bond breaking, which does not involve protons-a key mechanistic feature that enables cobalt phthalocyanine/carbon nanotube to efficiently catalyse DCA dechlorination and suppress the hydrogen evolution reaction. The nanotubular structure of the catalyst enables us to shape it into a flow-through electrified membrane, which we have used to demonstrate >95% DCA removal from simulated water samples with environmentally relevant DCA and electrolyte concentrations.

7.
Chem Sci ; 6(10): 5491-5498, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-29861889

ABSTRACT

We herein report a new protocol for the Pd-catalyzed ß-arylation of ketones without stoichiometric heavy metals. Widely accessible diaryliodonium salts are used as both the oxidant and aryl source. This tandem redox catalysis merges ketone dehydrogenation and conjugate addition without an additional oxidant or reductant. This transformation features the use of a unique bis-N-tosylsulfilimine ligand and the combination of potassium trifluoroacetate/trifluoroacetic acid to maintain an appropriate acidity of the reaction medium. The reaction tolerates both air and moisture, and shows a broad substrate scope. Kinetics studies, along with filtration and poisoning tests, support the involvement of palladium nanoparticles in the catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...