Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Autism ; 11(1): 52, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32560741

ABSTRACT

BACKGROUND: Fragile X syndrome (FXS), a neurodevelopmental disorder, is a leading monogenetic cause of intellectual disability and autism spectrum disorder. Notwithstanding the extensive studies using rodent and other pre-clinical models of FXS, which have provided detailed mechanistic insights into the pathophysiology of this disorder, it is only relatively recently that human stem cell-derived neurons have been employed as a model system to further our understanding of the pathophysiological events that may underlie FXS. Our study assesses the physiological properties of human pluripotent stem cell-derived cortical neurons lacking fragile X mental retardation protein (FMRP). METHODS: Electrophysiological whole-cell voltage- and current-clamp recordings were performed on two control and three FXS patient lines of human cortical neurons derived from induced pluripotent stem cells. In addition, we also describe the properties of an isogenic pair of lines in one of which FMR1 gene expression has been silenced. RESULTS: Neurons lacking FMRP displayed bursts of spontaneous action potential firing that were more frequent but shorter in duration compared to those recorded from neurons expressing FMRP. Inhibition of large conductance Ca2+-activated K+ currents and the persistent Na+ current in control neurons phenocopies action potential bursting observed in neurons lacking FMRP, while in neurons lacking FMRP pharmacological potentiation of voltage-dependent Na+ channels phenocopies action potential bursting observed in control neurons. Notwithstanding the changes in spontaneous action potential firing, we did not observe any differences in the intrinsic properties of neurons in any of the lines examined. Moreover, we did not detect any differences in the properties of miniature excitatory postsynaptic currents in any of the lines. CONCLUSIONS: Pharmacological manipulations can alter the action potential burst profiles in both control and FMRP-null human cortical neurons, making them appear like their genetic counterpart. Our studies indicate that FMRP targets that have been found in rodent models of FXS are also potential targets in a human-based model system, and we suggest potential mechanisms by which activity is altered.


Subject(s)
Action Potentials/physiology , Cerebral Cortex/pathology , Fragile X Mental Retardation Protein/metabolism , Induced Pluripotent Stem Cells/pathology , Neurons/pathology , Action Potentials/drug effects , Adolescent , Animals , Cell Differentiation/drug effects , Child, Preschool , Humans , Indoles/pharmacology , Induced Pluripotent Stem Cells/drug effects , Male , Mice , Neurons/drug effects , Riluzole/pharmacology , Sodium Channels/metabolism , Veratridine/pharmacology , Young Adult
2.
Bioorg Chem ; 56: 54-61, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25019692

ABSTRACT

Abyssinones I and II are prenylated flavanones existing in plant Erythrina abyssinica showing diverse biological activities including anticancer activities. We synthesized racemic mixtures of these flavanones from corresponding chalcones and herein we report for the first time the molecular mechanisms of cell death, anti-proliferative effect and ability to induce apoptosis in human cervical carcinoma (HeLa) cells. Cytotoxicity was assessed by MTT assay to determine LD50 for prenylated chalcones and their corresponding flavones. Abyssinones promoted apoptosis by up regulation of p53 and Bax, along with down regulation of Bcl-2. Apoptosis induction was mediated through mitochondrial pathway releasing cytochrome c and Apaf-1 into cytosol; associated with activation of caspase-3. Further they were able to decrease the expression of cell proliferation markers PCNA and cyclin D1 indicating anti proliferative activity. These observations demonstrate that abyssinones trigger apoptosis via mitochondrial pathway by activation of caspase-3 and disrupts cell cycle.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Flavonoids/pharmacology , Mitochondria/drug effects , Uterine Cervical Neoplasms/pathology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Flavonoids/chemistry , Flavonoids/isolation & purification , Flow Cytometry , HeLa Cells , Humans , Mitochondria/metabolism , Molecular Structure , Structure-Activity Relationship , Tumor Cells, Cultured , Uterine Cervical Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...