Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Int J Mol Sci ; 24(19)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37834350

ABSTRACT

The search for a clinically affordable substitute of human blood for transfusion is still an unmet need of modern society. More than 50 years of research on acellular hemoglobin (Hb)-based oxygen carriers (HBOC) have not yet produced a single formulation able to carry oxygen to hemorrhage-challenged tissues without compromising the body's functions. Of the several bottlenecks encountered, the high reactivity of acellular Hb with circulating nitric oxide (NO) is particularly arduous to overcome because of the NO-scavenging effect, which causes life-threatening side effects as vasoconstriction, inflammation, coagulopathies, and redox imbalance. The purpose of this manuscript is not to add a review of candidate HBOC formulations but to focus on the biochemical and physiological events that underly NO scavenging by acellular Hb. To this purpose, we examine the differential chemistry of the reaction of NO with erythrocyte and acellular Hb, the NO signaling paths in physiological and HBOC-challenged situations, and the protein engineering tools that are predicted to modulate the NO-scavenging effect. A better understanding of two mechanisms linked to the NO reactivity of acellular Hb, the nitrosylated Hb and the nitrite reductase hypotheses, may become essential to focus HBOC research toward clinical targets.


Subject(s)
Blood Substitutes , Nitric Oxide , Humans , Nitric Oxide/metabolism , Oxygen , Hemoglobins/metabolism , Erythrocytes/metabolism
2.
J Physiol ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37860950

ABSTRACT

Intermittent hypoxia (IH) is commonly associated with pathological conditions, particularly obstructive sleep apnoea. However, IH is also increasingly used to enhance health and performance and is emerging as a potent non-pharmacological intervention against numerous diseases. Whether IH is detrimental or beneficial for health is largely determined by the intensity, duration, number and frequency of the hypoxic exposures and by the specific responses they engender. Adaptive responses to hypoxia protect from future hypoxic or ischaemic insults, improve cellular resilience and functions, and boost mental and physical performance. The cellular and systemic mechanisms producing these benefits are highly complex, and the failure of different components can shift long-term adaptation to maladaptation and the development of pathologies. Rather than discussing in detail the well-characterized individual responses and adaptations to IH, we here aim to summarize and integrate hypoxia-activated mechanisms into a holistic picture of the body's adaptive responses to hypoxia and specifically IH, and demonstrate how these mechanisms might be mobilized for their health benefits while minimizing the risks of hypoxia exposure.

3.
Int J Mol Sci ; 24(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36835089

ABSTRACT

Hypoxia is a life-threatening challenge for about 1% of the world population, as well as a contributor to high morbidity and mortality scores in patients affected by various cardiopulmonary, hematological, and circulatory diseases. However, the adaptation to hypoxia represents a failure for a relevant portion of the cases as the pathways of potential adaptation often conflict with well-being and generate diseases that in certain areas of the world still afflict up to one-third of the populations living at altitude. To help understand the mechanisms of adaptation and maladaptation, this review examines the various steps of the oxygen cascade from the atmosphere to the mitochondria distinguishing the patterns related to physiological (i.e., due to altitude) and pathological (i.e., due to a pre-existing disease) hypoxia. The aim is to assess the ability of humans to adapt to hypoxia in a multidisciplinary approach that correlates the function of genes, molecules, and cells with the physiologic and pathological outcomes. We conclude that, in most cases, it is not hypoxia by itself that generates diseases, but rather the attempts to adapt to the hypoxia condition. This underlies the paradigm shift that when adaptation to hypoxia becomes excessive, it translates into maladaptation.


Subject(s)
Hypoxia , Oxygen , Humans , Oxygen/metabolism , Hypoxia/metabolism , Adaptation, Physiological/genetics , Altitude , Mitochondria/metabolism , Atmosphere
4.
Molecules ; 28(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36677554

ABSTRACT

Glutathionyl-hemoglobin (HbSSG) is used as a human biomarker to pinpoint systemic oxidative stress caused by various pathological conditions, noxious lifestyles, and exposure to drugs and environmental or workplace toxicants. Measurement by MALDI mass spectrometry is most frequently used, however, the method suffers from excessive uncontrolled variability. This article describes the improvement of a MALDI-ToF mass spectrometry method for HbSSG measurement through enhanced precision, based on strict control of sample preparation steps and spreadsheet-based data analysis. This improved method displays enhanced precision in the analysis of several hundred samples deriving from studies in different classes of healthy and diseased human subjects. Levels span from 0.5% (lower limit of detection) up to 30%, measured with a precision (as SE%) < 0.5%. We optimized this global procedure to improve data quality and to enable the Operator to work with a reduced physical and psychological strain. Application of this method, for which full instruction and the data analysis spreadsheet are supplied, can encourage the exploitation of HbSSG to study human oxidative stress in a variety of pathological and living conditions and to rationally test the efficacy of antioxidant measures and treatments in the frame of health promotion.


Subject(s)
Glutathione , Hemoglobins , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Hemoglobins/analysis , Glutathione/analysis , Biomarkers
6.
J Clin Med ; 11(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36556146

ABSTRACT

Obesity is a chronic disease in which abnormal deposition of fat threatens health, leading to diabetes, cardiovascular diseases, cancer, and other chronic illnesses. According to the WHO, 19.8% of the adult population in Italy is obese, and the prevalence is higher among men. It is important to know the predisposition of an individual to become obese and to respond to bariatric surgery, the most up-to-date treatment for severe obesity. To this purpose, we developed an NGS gene panel, comprising 72 diagnostic genes and 244 candidate genes, and we sequenced 247 adult obese Italian patients. Eleven deleterious variants in 9 diagnostic genes and 17 deleterious variants in 11 candidate genes were identified. Interestingly, mutations were found in several genes correlated to the Bardet-Biedl syndrome. Then, 25 patients were clinically followed to evaluate their response to bariatric surgery. After a 12-month follow-up, the patients that carried deleterious variants in diagnostic or candidate genes had a reduced weight loss, as compared to the other patients. The NGS-based panel, including diagnostic and candidate genes used in this study, could play a role in evaluating, diagnosing, and managing obese individuals, and may help in predicting the outcome of bariatric surgery.

7.
J Prev Med Hyg ; 63(2 Suppl 3): E267-E278, 2022 Jun.
Article in English | MEDLINE | ID: mdl-36479476

ABSTRACT

A clinical research requires a systematic approach with diligent planning, execution and sampling in order to obtain reliable and validated results, as well as an understanding of each research methodology is essential for researchers. Indeed, selecting an inappropriate study type, an error that cannot be corrected after the beginning of a study, results in flawed methodology. The results of clinical research studies enhance the repertoire of knowledge regarding a disease pathogenicity, an existing or newly discovered medication, surgical or diagnostic procedure or medical device. Medical research can be divided into primary and secondary research, where primary research involves conducting studies and collecting raw data, which is then analysed and evaluated in secondary research. The successful deployment of clinical research methodology depends upon several factors. These include the type of study, the objectives, the population, study design, methodology/techniques and the sampling and statistical procedures used. Among the different types of clinical studies, we can recognize descriptive or analytical studies, which can be further categorized in observational and experimental. Finally, also pre-clinical studies are of outmost importance, representing the steppingstone of clinical trials. It is therefore important to understand the types of method for clinical research. Thus, this review focused on various aspects of the methodology and describes the crucial steps of the conceptual and executive stages.


Subject(s)
Research Design , Humans
8.
J Prev Med Hyg ; 63(2 Suppl 3): E142-E149, 2022 Jun.
Article in English | MEDLINE | ID: mdl-36479478

ABSTRACT

Precision nutrition is an emerging branch of nutrition science that aims to use modern omics technologies (genomics, proteomics, and metabolomics) to assess an individual's response to specific foods or dietary patterns and thereby determine the most effective diet or lifestyle interventions to prevent or treat specific diseases. Metabolomics is vital to nearly every aspect of precision nutrition. It can be targeted or untargeted, and it has many applications. Indeed, it can be used to comprehensively characterize the thousands of chemicals in foods, identify food by-products in human biofluids or tissues, characterize nutrient deficiencies or excesses, monitor biochemical responses to dietary interventions, track long- or short-term dietary habits, and guide the development of nutritional therapies. Indeed, metabolomics can be coupled with genomics and proteomics to study and advance the field of precision nutrition. Integrating omics with epidemiological and clinical data will begin to define the beneficial effects of human food metabolites. In this review, we present the metabolome and its relationship to precision nutrition. Moreover, we describe the different techniques used in metabolomics and present how metabolomics has been applied to advance the field of precision nutrition by providing notable examples and cases.


Subject(s)
Diet , Humans
9.
J Prev Med Hyg ; 63(2 Suppl 3): E255-E266, 2022 Jun.
Article in English | MEDLINE | ID: mdl-36479489

ABSTRACT

Animal experimentation is widely used around the world for the identification of the root causes of various diseases in humans and animals and for exploring treatment options. Among the several animal species, rats, mice and purpose-bred birds comprise almost 90% of the animals that are used for research purpose. However, growing awareness of the sentience of animals and their experience of pain and suffering has led to strong opposition to animal research among many scientists and the general public. In addition, the usefulness of extrapolating animal data to humans has been questioned. This has led to Ethical Committees' adoption of the 'four Rs' principles (Reduction, Refinement, Replacement and Responsibility) as a guide when making decisions regarding animal experimentation. Some of the essential considerations for humane animal experimentation are presented in this review along with the requirement for investigator training. Due to the ethical issues surrounding the use of animals in experimentation, their use is declining in those research areas where alternative in vitro or in silico methods are available. However, so far it has not been possible to dispense with experimental animals completely and further research is needed to provide a road map to robust alternatives before their use can be fully discontinued.


Subject(s)
Animal Experimentation , Humans , Rats , Mice , Animals , Research Design
10.
BMJ ; 379: o2823, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36450394
11.
Antioxid Redox Signal ; 37(13-15): 863-866, 2022 11.
Article in English | MEDLINE | ID: mdl-35943874

ABSTRACT

Molecular oxygen is often represented as a double-edged sword, essential to sustain oxidative phosphorylation that provides the bulk of the cell biological energy, yet toxic. In the current geological era, its proportion in the atmosphere happens to be 20.93%-20.95%, but in past eras, it fluctuated within the 0%-30% range, with different forms of life that could adapt successfully even by using alternative redox sources as hydrogen sulfide. Actually, humans may have lost the ability to adapt to oxygen levels departing consistently from 20.93% to 20.95%. Consequently, either hypoxia or hyperoxia represents potentially lethal situations. Yet, they are more common than suspected. Hypoxia is found in physiological (high altitude, commercial flights, prebirth environment, and physical exercise) and pathological (inflammation, solid cancers, ischemia, as well as in cardiopulmonary, kidney, and neurodegenerative diseases) contexts, whereas hyperoxia, although less frequent, is the most used therapy in pulmonary patients and during anesthesia. The Forum "Oxygen Sensing" contains contributions aimed at clarifying the complex mechanisms underlying the responses to too much and too little oxygen at molecular, cellular, tissue, and body levels, highlighting the oxygen-sensing mechanisms in various districts of the organism. The translational interest of this Forum invests the modulation of the oxygen-sensing activity and sensitivity as a therapeutic perspective in the treatment of several diseases. Antioxid. Redox Signal. 37, 863-866.


Subject(s)
Hyperoxia , Oxygen , Humans , Adaptation, Physiological , Hypoxia , Oxidative Phosphorylation
12.
Int J Mol Sci ; 23(13)2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35806420

ABSTRACT

Lymphedema is a chronic inflammatory disorder caused by ineffective fluid uptake by the lymphatic system, with effects mainly on the lower limbs. Lymphedema is either primary, when caused by genetic mutations, or secondary, when it follows injury, infection, or surgery. In this study, we aim to assess to what extent the current genetic tests detect genetic variants of lymphedema, and to identify the major molecular pathways that underlie this rather unknown disease. We recruited 147 individuals with a clinical diagnosis of primary lymphedema and used established genetic tests on their blood or saliva specimens. Only 11 of these were positive, while other probands were either negative (63) or inconclusive (73). The low efficacy of such tests calls for greater insight into the underlying mechanisms to increase accuracy. For this purpose, we built a molecular pathways diagram based on a literature analysis (OMIM, Kegg, PubMed, Scopus) of candidate and diagnostic genes. The PI3K/AKT and the RAS/MAPK pathways emerged as primary candidates responsible for lymphedema diagnosis, while the Rho/ROCK pathway appeared less critical. The results of this study suggest the most important pathways involved in the pathogenesis of lymphedema, and outline the most promising diagnostic and candidate genes to diagnose this disease.


Subject(s)
Lymphedema , Phosphatidylinositol 3-Kinases , Genetic Testing , Humans , Lymphatic System/metabolism , Lymphedema/diagnosis , Lymphedema/genetics , Mutation , Phosphatidylinositol 3-Kinases/genetics
13.
Antioxid Redox Signal ; 37(13-15): 972-989, 2022 11.
Article in English | MEDLINE | ID: mdl-35412859

ABSTRACT

Significance: Oxygen levels are key regulators of virtually every living mammalian cell, under both physiological and pathological conditions. Starting from embryonic and fetal development, through the growth, onset, and progression of diseases, oxygen is a subtle, although pivotal, mediator of key processes such as differentiation, proliferation, autophagy, necrosis, and apoptosis. Hypoxia-driven modifications of cellular physiology are investigated in depth or for their clinical and translational relevance, especially in the ischemic scenario. Recent Advances: The mild or severe lack of oxygen is, undoubtedly, related to cell death, although abundant evidence points at oscillating oxygen levels, instead of permanent low pO2, as the most detrimental factor. Different cell types can consume oxygen at different rates and, most interestingly, some cells can shift from low to high consumption according to the metabolic demand. Hence, we can assume that, in the intracellular compartment, oxygen tension varies from low to high levels depending on both supply and consumption. Critical Issues: The positive balance between supply and consumption leads to a pro-oxidative environment, with some cell types facing hypoxia/hyperoxia cycles, whereas some others are under fairly constant oxygen tension. Future Directions: Within this frame, the alterations of oxygen levels (dysoxia) are critical in two paradigmatic organs, the heart and brain, under physiological and pathological conditions and the interactions of oxygen with other physiologically relevant gases, such as nitric oxide, can alternatively contribute to the worsening or protection of ischemic organs. Further, the effects of dysoxia are of pivotal importance for iron metabolism. Antioxid. Redox Signal. 37, 972-989.


Subject(s)
Hyperoxia , Oxygen , Animals , Humans , Oxygen/metabolism , Hypoxia/metabolism , Hyperoxia/metabolism , Oxygen Consumption/physiology , Cell Hypoxia , Mammals/metabolism
17.
Front Physiol ; 13: 819345, 2022.
Article in English | MEDLINE | ID: mdl-35145434

ABSTRACT

Although the human body may dynamically adapt to mild and brief oxygen shortages, there is a growing interest in understanding how the metabolic pathways are modified during sustained exposure to chronic hypoxia. Located at an equivalent altitude of approximately 3,800 m asl, the Concordia Station in Antarctica represents an opportunity to study the course of human adaption to mild hypoxia with reduced impact of potentially disturbing variables else than oxygen deprivation. We recruited seven healthy subjects who spent 10 months in the Concordia Station, and collected plasma samples at sea level before departure, and 90 days, 6 months, and 10 months during hypoxia. Samples were analyzed by untargeted liquid chromatography high resolution mass spectrometry to unravel how the non-polar and polar metabolomes are affected. Statistical analyses were performed by clustering the subjects into four groups according to the duration of hypoxia exposure. The non-polar metabolome revealed a modest decrease in the concentration of all the major lipid classes. By contrast, the polar metabolome showed marked alterations in several metabolic pathways, especially those related to amino acids metabolism, with a particular concern of arginine, glutamine, phenylalanine, tryptophan, and tyrosine. Remarkably, all the changes were evident since the first time point and remained unaffected by hypoxia duration (with the exception of a slight return of the non-polar metabolome after 6 months), highlighting a relative inability of the body to compensate them. Finally, we identified a few metabolic pathways that emerged as the main targets of chronic hypoxia.

18.
Neural Regen Res ; 17(4): 754-758, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34472461

ABSTRACT

Fundamental organelles that occur in every cell type with the exception of mammal erythrocytes, the mitochondria are required for multiple pivotal processes that include the production of biological energy, the biosynthesis of reactive oxygen species, the control of calcium homeostasis, and the triggering of cell death. The disruption of anyone of these processes has been shown to impact strongly the function of all cells, but especially of neurons. In this review, we discuss the role of the mitochondria impairment in the development of the neurodegenerative diseases Amyotrophic Lateral Sclerosis, Parkinson's disease and Alzheimer's disease. We highlight how mitochondria disruption revolves around the processes that underlie the mitochondria's life cycle: fusion, fission, production of reactive oxygen species and energy failure. Both genetic and sporadic forms of neurodegenerative diseases are unavoidably accompanied with and often caused by the dysfunction in one or more of the key mitochondrial processes. Therefore, in order to get in depth insights into their health status in neurodegenerative diseases, we need to focus into innovative strategies aimed at characterizing the various mitochondrial processes. Current techniques include Mitostress, Mitotracker, transmission electron microscopy, oxidative stress assays along with expression measurement of the proteins that maintain the mitochondrial health. We will also discuss a panel of approaches aimed at mitigating the mitochondrial dysfunction. These include canonical drugs, natural compounds, supplements, lifestyle interventions and innovative approaches as mitochondria transplantation and gene therapy. In conclusion, because mitochondria are fundamental organelles necessary for virtually all the cell functions and are severely impaired in neurodegenerative diseases, it is critical to develop novel methods to measure the mitochondrial state, and novel therapeutic strategies aimed at improving their health.

19.
Sci Rep ; 11(1): 21633, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34737330

ABSTRACT

Although the serum lipidome is markedly affected by COVID-19, two unresolved issues remain: how the severity of the disease affects the level and the composition of serum lipids and whether serum lipidome analysis may identify specific lipids impairment linked to the patients' outcome. Sera from 49 COVID-19 patients were analyzed by untargeted lipidomics. Patients were clustered according to: inflammation (C-reactive protein), hypoxia (Horowitz Index), coagulation state (D-dimer), kidney function (creatinine) and age. COVID-19 patients exhibited remarkable and distinctive dyslipidemia for each prognostic factor associated with reduced defense against oxidative stress. When patients were clustered by outcome (7 days), a peculiar lipidome signature was detected with an overall increase of 29 lipid species, including-among others-four ceramide and three sulfatide species, univocally related to this analysis. Considering the lipids that were affected by all the prognostic factors, we found one sphingomyelin related to inflammation and viral infection of the respiratory tract and two sphingomyelins, that are independently related to patients' age, and they appear as candidate biomarkers to monitor disease progression and severity. Although preliminary and needing validation, this report pioneers the translation of lipidome signatures to link the effects of five critical clinical prognostic factors with the patients' outcomes.


Subject(s)
COVID-19/metabolism , Lipids/blood , Serum/chemistry , Adult , Aged , Biomarkers/blood , COVID-19/blood , Dyslipidemias/metabolism , Female , Humans , Italy , Lipidomics/methods , Lipids/analysis , Male , Middle Aged , Oxidative Stress/physiology , Prognosis , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Sphingomyelins/blood
20.
Antioxidants (Basel) ; 10(9)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34573092

ABSTRACT

In patients affected by Acute Respiratory Distress Syndrome (ARDS), Chronic Obstructive Pulmonary Disease (COPD) and Coronavirus Disease 2019 (COVID-19), unclear mechanisms negatively interfere with the hematopoietic response to hypoxia. Although stimulated by physiological hypoxia, pulmonary hypoxic patients usually develop anemia, which may ultimately complicate the outcome. To characterize this non-adaptive response, we dissected the interplay among the redox state, iron regulation, and inflammation in patients challenged by either acute (ARDS and COVID-19) or chronic (COPD) hypoxia. To this purpose, we evaluated a panel of redox state biomarkers that may integrate the routine iron metabolism assays to monitor the patients' inflammatory and oxidative state. We measured redox and hematopoietic regulators in 20 ARDS patients, 20 ambulatory COPD patients, 9 COVID-19 ARDS-like patients, and 10 age-matched non-hypoxic healthy volunteers (controls). All the examined pathological conditions induced hypoxia, with ARDS and COVID-19 depressing the hematopoietic response without remarkable effects on erythropoietin. Free iron was higher than the controls in all patients, with higher levels of hepcidin and soluble transferrin receptor in ARDS and COVID-19. All markers of the redox state and antioxidant barrier were overexpressed in ARDS and COVID-19. However, glutathionyl hemoglobin, a candidate marker for the redox imbalance, was especially low in ARDS, despite depressed levels of glutathione being present in all patients. Although iron regulation was dysfunctional in all groups, the depressed antioxidant barrier in ARDS, and to a lesser extent in COVID-19, might induce greater inflammatory responses with consequent anemia.

SELECTION OF CITATIONS
SEARCH DETAIL
...